Now you can activate the Hugging Face `diffusers` library safety check
for NSFW and other potentially disturbing imagery.
To turn on the safety check, pass --safety_checker at the command
line. For developers, the flag is `safety_checker=True` passed to
ldm.generate.Generate(). Once the safety checker is turned on, it
cannot be turned off unless you reinitialize a new Generate object.
When the safety checker is active, suspect images will be blurred and
a warning icon is added. There is also a warning message printed in
the CLI, but it can be a little hard to see because of its positioning
in the output stream.
There is a slight but noticeable delay when the safety checker runs.
Note that invisible watermarking is *not* currently implemented. The
watermark code distributed by the CompViz distribution uses a library
that does not seem to be able to retrieve the watermarks it creates,
and it does not appear that Hugging Face `diffusers` or other SD
distributions are doing any watermarking.
- The directory "models" in the main InvokeAI directory was conflicting
with loading "models.clipseg". To fix this issue, I have renamed the
models.clipseg to clipseg_models.clipseg, and applied this change to
the 'models-rename' branch of invoke-ai's fork of clipseg.
- updated environment-mac.yml #932
- use the upstream GFPGAN library now that issues with color-changing fixed
and facial recognition improved #905
- preload_models fixed to download additional models needed by gfpgan
- Added support for pyreadline3 so that Window users can benefit.
- Added the !search command to search the history for a matching string:
~~~
!search puppies
[20] puppies at the food bowl -Ak_lms
[54] house overrun by hungry puppies -C20 -s100
~~~
- Added the !clear command to clear the in-memory and on-disk
command history.
- img2img confirmed working with all samplers
- inpainting working on ddim & plms. Changes to k-diffusion
module seem to be needed for inpainting support.
- switched k-diffuser noise schedule to original karras schedule,
which reduces the step number needed for good results