## What type of PR is this? (check all applicable)
- [ ] Refactor
- [ ] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [ ] Yes
- [ ] No, because:
## Have you updated relevant documentation?
- [ ] Yes
- [ ] No
## Description
## Related Tickets & Documents
<!--
For pull requests that relate or close an issue, please include them
below.
For example having the text: "closes #1234" would connect the current
pull
request to issue 1234. And when we merge the pull request, Github will
automatically close the issue.
-->
- Related Issue #
- Closes #
## QA Instructions, Screenshots, Recordings
<!--
Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Added/updated tests?
- [ ] Yes
- [ ] No : _please replace this line with details on why tests
have not been included_
## [optional] Are there any post deployment tasks we need to perform?
## What type of PR is this? (check all applicable)
- [x] Bug Fix
## Desc
Fixes a bug where the board name is not displayed in the header if there
are no images in it.
## What type of PR is this? (check all applicable)
- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:
## Description
Add progress preview for sdxl generation nodes
## What type of PR is this? (check all applicable)
- [ ] Refactor
- [ X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [X ] Yes
- [ ] No, because:
## Have you updated relevant documentation?
- [ X] Yes (swagger)
- [ ] No
## Description
This add new routes for getting and setting the command line console
logging level.
## What type of PR is this? (check all applicable)
- [ ] Refactor
- [X] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [X] Yes Discussed with @hipsterusername yesterday
- [ ] No, because:
## Have you updated relevant documentation?
- [ ] Yes
- [X] No Not yet (but change to default ControlNet resizing doesn't
require any user documentation)
## Description
This PR adds resize modes (just_resize, crop_resize, fill_resize) to
InvokeAI's ControlNet node. The implementation is largely based on
lllyasviel's, which includes a high quality resizer specifically
intended to handle common ControlNet preprocessor outputs, such as
binary (black/white) images, grayscale images, and binary or grayscale
thin lines. Previously the InvokeAI ControlNet implementation only did a
simple resize with independent x/y scaling to match noise latent.
### "just_resize" mode (the default setting)
With the new implementation, using the default "just_resize" mode,
ControlNet images are still resized with independent x/y scaling to
match the noise latent resolution, but with the high quality resizer. As
a result, images generated in InvokeAI now look much closer to
counterparts generated via sd-webui-controlnet. See example below. All
inference runs are using prompt="old man", same ControlNet canny edge
detection preprocessor and model and control image, identical other
parameters except for control_mode. The top row is previous simple
resize implementation, the bottom row is with new high quality resizer
and "just_resize" mode. Control_mode is: left="balanced", middle="more
prompt", right="more control". The high quality resize images are
identical (at least by eye) to output from sd-webui-controlnet with same
settings.
![just_resize_simple_vs_just_resize_lvmin](https://github.com/invoke-ai/InvokeAI/assets/303100/5fe02121-616a-4531-b2a4-b423cc054b99)
## "crop_resize" and "fill_resize" modes
The other two resize modes are "crop_resize" and "fill_resize". Whereas
"just_resize" ignores any aspect ratio mismatch between the ControlNet
image and the noise latent, these other modes preserve the aspect ratio
of the ControlNet image. The "crop_resize" mode does this by cropping
the image, and the "fill_resize" option does this by expanding the image
(adding fill pixels). See example below. In this case all inference runs
are using prompt="old man", the ControlNet Midas depth detection
preprocessor and depth model, same control image of size 512x512,
control_mode="balanced", and identical other parameters except for
resize_mode and noise latent dimensions. For top row noise latent size
is 768x512, and for bottom row noise latent size is 512x768. Resize_mode
is: left="just_resize", middle="crop_resize", right="fill_resize"
![Screenshot from 2023-07-20
02-09-22](https://github.com/invoke-ai/InvokeAI/assets/303100/7b4df456-2a5e-4ec4-bce1-fafdba52f025)
## Are there any post deployment tasks we need to perform?
To use "just_resize" mode in linear UI, no post deployment work is
needed. The default is switched from old resizer to new high quality
resizer.
To use "just_resize", "crop_resize", and "fill_resize" modes in node UI,
no post deployment work is needed. There is also an additional option
"just_resize_simple" that uses old resizer, mainly left in for testing
and for anyone curious to see the difference.
To use "crop_resize" and "fill_resize" in linear UI, there will need to
be some work to incorporate choice of three modes in ControlNet UI
(probably best to not expose "just_resize_simple" in linear UI, it just
confuses things).