Commit Graph

91 Commits

Author SHA1 Message Date
Lincoln Stein
d56337f2d8 make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-02-29 13:16:37 -05:00
psychedelicious
c3f0d2e273 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-02-29 13:16:35 -05:00
psychedelicious
5fa13fba36 chore: ruff 2024-01-22 16:10:25 +11:00
psychedelicious
f28f761436 fix(api): add NoCacheStaticFiles to prevent *all* caching
The previous method wasn't totally foolproof, and locales/assets were cached.

To solve this once and for all (famous last words, I know), we can subclass `StaticFiles` and use maximally strict no-caching headers to disable caching on all static files.
2024-01-22 16:10:25 +11:00
psychedelicious
98a44d7fa1 feat(ui): update assets
- Add various brand images, organise images
- Create favicon for docs pages (light blue version of key logo)
- Rename app title to `Invoke - Community Edition`
2024-01-12 08:02:59 +11:00
Lincoln Stein
fbede84405
[feature] Download Queue (#5225)
* add base definition of download manager

* basic functionality working

* add unit tests for download queue

* add documentation and FastAPI route

* fix docs

* add missing test dependency; fix import ordering

* fix file path length checking on windows

* fix ruff check error

* move release() into the __del__ method

* disable testing of stderr messages due to issues with pytest capsys fixture

* fix unsorted imports

* harmonized implementation of start() and stop() calls in download and & install modules

* Update invokeai/app/services/download/download_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* replace test datadir fixture with tmp_path

* replace DownloadJobBase->DownloadJob in download manager documentation

* make source and dest arguments to download_queue.download() an AnyHttpURL and Path respectively

* fix pydantic typecheck errors in the download unit test

* ruff formatting

* add "job cancelled" as an event rather than an exception

* fix ruff errors

* Update invokeai/app/services/download/download_default.py

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

* use threading.Event to stop service worker threads; handle unfinished job edge cases

* remove dangling STOP job definition

* fix ruff complaint

* fix ruff check again

* avoid race condition when start() and stop() are called simultaneously from different threads

* avoid race condition in stop() when a job becomes active while shutting down

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
2023-12-22 12:35:57 -05:00
Kevin Turner
fd4e041e7c feat: serve HTTPS when configured with ssl_certfile 2023-12-12 16:01:43 +11:00
psychedelicious
daf00efa4d fix(api): only attempt to serve UI build if it exists 2023-12-11 12:30:13 +11:00
psychedelicious
86a74e929a feat(ui): add support for custom field types
Node authors may now create their own arbitrary/custom field types. Any pydantic model is supported.

Two notes:
1. Your field type's class name must be unique.

Suggest prefixing fields with something related to the node pack as a kind of namespace.

2. Custom field types function as connection-only fields.

For example, if your custom field has string attributes, you will not get a text input for that attribute when you give a node a field with your custom type.

This is the same behaviour as other complex fields that don't have custom UIs in the workflow editor - like, say, a string collection.

feat(ui): fix tooltips for custom types

We need to hold onto the original type of the field so they don't all just show up as "Unknown".

fix(ui): fix ts error with custom fields

feat(ui): custom field types connection validation

In the initial commit, a custom field's original type was added to the *field templates* only as `originalType`. Custom fields' `type` property was `"Custom"`*. This allowed for type safety throughout the UI logic.

*Actually, it was `"Unknown"`, but I changed it to custom for clarity.

Connection validation logic, however, uses the *field instance* of the node/field. Like the templates, *field instances* with custom types have their `type` set to `"Custom"`, but they didn't have an `originalType` property. As a result, all custom fields could be connected to all other custom fields.

To resolve this, we need to add `originalType` to the *field instances*, then switch the validation logic to use this instead of `type`.

This ended up needing a bit of fanagling:

- If we make `originalType` a required property on field instances, existing workflows will break during connection validation, because they won't have this property. We'd need a new layer of logic to migrate the workflows, adding the new `originalType` property.

While this layer is probably needed anyways, typing `originalType` as optional is much simpler. Workflow migration logic can come layer.

(Technically, we could remove all references to field types from the workflow files, and let the templates hold all this information. This feels like a significant change and I'm reluctant to do it now.)

- Because `originalType` is optional, anywhere we care about the type of a field, we need to use it over `type`. So there are a number of `field.originalType ?? field.type` expressions. This is a bit of a gotcha, we'll need to remember this in the future.

- We use `Array.prototype.includes()` often in the workflow editor, e.g. `COLLECTION_TYPES.includes(type)`. In these cases, the const array is of type `FieldType[]`, and `type` is is `FieldType`.

Because we now support custom types, the arg `type` is now widened from `FieldType` to `string`.

This causes a TS error. This behaviour is somewhat controversial (see https://github.com/microsoft/TypeScript/issues/14520). These expressions are now rewritten as `COLLECTION_TYPES.some((t) => t === type)` to satisfy TS. It's logically equivalent.

fix(ui): typo

feat(ui): add CustomCollection and CustomPolymorphic field types

feat(ui): add validation for CustomCollection & CustomPolymorphic types

- Update connection validation for custom types
- Use simple string parsing to determine if a field is a collection or polymorphic type.
- No longer need to keep a list of collection and polymorphic types.
- Added runtime checks in `baseinvocation.py` to ensure no fields are named in such a way that it could mess up the new parsing

chore(ui): remove errant console.log

fix(ui): rename 'nodes.currentConnectionFieldType' -> 'nodes.connectionStartFieldType'

This was confusingly named and kept tripping me up. Renamed to be consistent with the `reactflow` `ConnectionStartParams` type.

fix(ui): fix ts error

feat(nodes): add runtime check for custom field names

"Custom", "CustomCollection" and "CustomPolymorphic" are reserved field names.

chore(ui): add TODO for revising field type names

wip refactor fieldtype structured

wip refactor field types

wip refactor types

wip refactor types

fix node layout

refactor field types

chore: mypy

organisation

organisation

organisation

fix(nodes): fix field orig_required, field_kind and input statuses

feat(nodes): remove broken implementation of default_factory on InputField

Use of this could break connection validation due to the difference in node schemas required fields and invoke() required args.

Removed entirely for now. It wasn't ever actually used by the system, because all graphs always had values provided for fields where default_factory was used.

Also, pydantic is smart enough to not reuse the same object when specifying a default value - it clones the object first. So, the common pattern of `default_factory=list` is extraneous. It can just be `default=[]`.

fix(nodes): fix InputField name validation

workflow validation

validation

chore: ruff

feat(nodes): fix up baseinvocation comments

fix(ui): improve typing & logic of buildFieldInputTemplate

improved error handling in parseFieldType

fix: back compat for deprecated default_factory and UIType

feat(nodes): do not show node packs loaded log if none loaded

chore(ui): typegen
2023-11-29 10:49:31 +11:00
Lincoln Stein
250ee4b11c resolve which paths can be None 2023-11-28 09:30:49 +11:00
Lincoln Stein
b7293d638b fix import block ordering 2023-11-28 09:30:49 +11:00
Lincoln Stein
eee863e380 fix type mismatches in invokeai.app.services.config.config_base & config_default 2023-11-28 09:30:49 +11:00
psychedelicious
4465f97cdf
Merge branch 'main' into refactor/model-manager-2 2023-11-14 07:51:57 +11:00
psychedelicious
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
Lincoln Stein
edeea5237b add sql-based model config store and api 2023-11-04 23:03:26 -04:00
psychedelicious
f0db4d36e4 feat: metadata refactor
- Refactor how metadata is handled to support a user-defined metadata in graphs
- Update workflow embed handling
- Update UI to work with these changes
- Update tests to support metadata/workflow changes
2023-10-20 12:05:13 +11:00
psychedelicious
c2da74c587 feat: add workflows table & service 2023-10-20 12:05:13 +11:00
psychedelicious
96e80c71fb chore: lint 2023-10-19 08:52:02 +11:00
psychedelicious
da403ba04c fix(api): flesh out types for api_app.py 2023-10-19 08:52:02 +11:00
psychedelicious
e4c45012f4 feat(api): add gzip middleware
On our local installs this will be a very minor change. For those running on remote servers, load times should be slightly improved.

It's a small change but I think correct.
2023-10-19 08:52:02 +11:00
psychedelicious
ef14ba1713 fix(api): fix uvicorn config loop arg
We were providing the loop itself, not the kind of loop. This didn't appear to cause any issues whatsoever, but now it's correct.
2023-10-19 08:52:02 +11:00
psychedelicious
9e06371178 feat(api): serve app via route & add cache-control: no-store
This should prevent `index.html` from *ever* being cached, so UIs will never be out of date.

Minor organisation to accomodate this.

Deleting old unused files from the early days
2023-10-19 08:52:02 +11:00
psychedelicious
9d9592230a chore: lint 2023-10-17 14:59:25 +11:00
psychedelicious
685cda89ff feat(api): restore get_session route 2023-10-17 14:59:25 +11:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
Martin Kristiansen
0e53b27655 Removing logging import from api_api.py 2023-09-25 07:25:32 +10:00
Lincoln Stein
25a71a1791
Merge branch 'main' into refactor/rename-get-logger 2023-09-23 14:49:07 -07:00
psychedelicious
b7938d9ca9
feat: queued generation (#4502)
* fix(config): fix typing issues in `config/`

`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere

`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)

* feat: queued generation and batches

Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.

* chore: flake8, isort, black

* fix(nodes): fix incorrect service stop() method

* fix(nodes): improve names of a few variables

* fix(tests): fix up tests after changes to batches/queue

* feat(tests): add unit tests for session queue helper functions

* feat(ui): dynamic prompts is always enabled

* feat(queue): add queue_status_changed event

* feat(ui): wip queue graphs

* feat(nodes): move cleanup til after invoker startup

* feat(nodes): add cancel_by_batch_ids

* feat(ui): wip batch graphs & UI

* fix(nodes): remove `Batch.batch_id` from required

* fix(ui): cleanup and use fixedCacheKey for all mutations

* fix(ui): remove orphaned nodes from canvas graphs

* fix(nodes): fix cancel_by_batch_ids result count

* fix(ui): only show cancel batch tooltip when batches were canceled

* chore: isort

* fix(api): return `[""]` when dynamic prompts generates no prompts

Just a simple fallback so we always have a prompt.

* feat(ui): dynamicPrompts.combinatorial is always on

There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.

* feat: add queue_id & support logic

* feat(ui): fix upscale button

It prepends the upscale operation to queue

* feat(nodes): return queue item when enqueuing a single graph

This facilitates one-off graph async workflows in the client.

* feat(ui): move controlnet autoprocess to queue

* fix(ui): fix non-serializable DOMRect in redux state

* feat(ui): QueueTable performance tweaks

* feat(ui): update queue list

Queue items expand to show the full queue item. Just as JSON for now.

* wip threaded session_processor

* feat(nodes,ui): fully migrate queue to session_processor

* feat(nodes,ui): add processor events

* feat(ui): ui tweaks

* feat(nodes,ui): consolidate events, reduce network requests

* feat(ui): cleanup & abstract queue hooks

* feat(nodes): optimize batch permutation

Use a generator to do only as much work as is needed.

Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.

The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.

* feat(ui): add seed behaviour parameter

This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt

"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.

* fix(ui): remove extraneous random seed nodes from linear graphs

* fix(ui): fix controlnet autoprocess not working when queue is running

* feat(queue): add timestamps to queue status updates

Also show execution time in queue list

* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem

This allows for much simpler handling of queue items.

* feat(api): deprecate sessions router

* chore(backend): tidy logging in `dependencies.py`

* fix(backend): respect `use_memory_db`

* feat(backend): add `config.log_sql` (enables sql trace logging)

* feat: add invocation cache

Supersedes #4574

The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.

## Results

This feature provides anywhere some significant to massive performance improvement.

The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.

## Overview

A new `invocation_cache` service is added to handle the caching. There's not much to it.

All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.

The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.

To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.

## In-Memory Implementation

An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.

Max node cache size is added as `node_cache_size` under the `Generation` config category.

It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.

Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.

## Node Definition

The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.

Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.

The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.

## One Gotcha

Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.

If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.

## Linear UI

The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.

This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.

This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.

## Workflow Editor

All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.

The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.

Users should consider saving their workflows after loading them in and having them updated.

## Future Enhancements - Callback

A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.

This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.

## Future Enhancements - Persisted Cache

Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.

* fix(ui): fix queue list item width

* feat(nodes): do not send the whole node on every generator progress

* feat(ui): strip out old logic related to sessions

Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...

* feat(ui): fix up param collapse labels

* feat(ui): click queue count to go to queue tab

* tidy(queue): update comment, query format

* feat(ui): fix progress bar when canceling

* fix(ui): fix circular dependency

* feat(nodes): bail on node caching logic if `node_cache_size == 0`

* feat(nodes): handle KeyError on node cache pop

* feat(nodes): bypass cache codepath if caches is disabled

more better no do thing

* fix(ui): reset api cache on connect/disconnect

* feat(ui): prevent enqueue when no prompts generated

* feat(ui): add queue controls to workflow editor

* feat(ui): update floating buttons & other incidental UI tweaks

* fix(ui): fix missing/incorrect translation keys

* fix(tests): add config service to mock invocation services

invoking needs access to `node_cache_size` to occur

* optionally remove pause/resume buttons from queue UI

* option to disable prepending

* chore(ui): remove unused file

* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-09-20 15:09:24 +10:00
psychedelicious
4395ee3c03 feat: parse config before importing anything else
We need to parse the config before doing anything related to invocations to ensure that the invocations union picks up on denied nodes.

- Move that to the top of api_app and cli_app
- Wrap subsequent imports in `if True:`, as a hack to satisfy flake8 and not have to noqa every line or the whole file
- Add tests to ensure graph validation fails when using a denied node, and that the invocations union does not have denied nodes (this indirectly provides confidence that the generated OpenAPI schema will not include denied nodes)
2023-09-08 13:24:37 -04:00
psychedelicious
58aa159a50 fix(backend): fix remaining instances of getLogger() 2023-09-05 10:43:30 +10:00
Millun Atluri
24132a7950
Merge branch 'main' into refactor/rename-get-logger 2023-08-28 11:38:37 +10:00
Kevin Turner
56c052a747
Merge branch 'main' into feat/dev_reload 2023-08-21 18:22:31 -07:00
Kevin Turner
76750b0121 doc(development): add section on hot reloading with --dev_reload 2023-08-21 16:45:39 -07:00
Kevin Turner
88963dbe6e Merge remote-tracking branch 'origin/main' into feat/dev_reload
# Conflicts:
#	invokeai/app/api_app.py
#	invokeai/app/services/config.py
2023-08-21 09:04:31 -07:00
psychedelicious
cdc49456e8 feat(api): add additional class attribute to invocations and outputs in OpenAPI schema
It is `"invocation"` for invocations and `"output"` for outputs. Clients may use this to confidently and positively identify if an OpenAPI schema object is an invocation or output, instead of using a potentially fragile heuristic.
2023-08-21 19:17:36 +10:00
Lincoln Stein
45d172d5a8
Merge branch 'main' into refactor/rename-get-logger 2023-08-20 16:08:32 -04:00
Martin Kristiansen
537ae2f901 Resolving merge conflicts for flake8 2023-08-18 15:52:04 +10:00
Kevin Turner
654dcd453f feat(dev_reload): use jurigged to hot reload changes to Python source 2023-08-17 19:02:44 -07:00
Lincoln Stein
4570702dd0 hotfix for crashing api 2023-08-17 20:17:10 -04:00
Lincoln Stein
1d107f30e5 remove getLogger() completely 2023-08-17 19:17:38 -04:00
psychedelicious
f49fc7fb55 feat: node editor
squashed rebase on main after backendd refactor
2023-08-16 09:54:38 +10:00
psychedelicious
9affdbbaad chore: black 2023-07-28 11:38:52 +10:00
Lincoln Stein
64bd11541a Merge branch 'main' into feat/unify-logging 2023-07-27 15:20:07 -04:00
Lincoln Stein
8023a23cec beat uvicorn access log into submission 2023-07-27 12:05:17 -04:00
Lincoln Stein
e4c0102b3c unified uvicorn access log entries too 2023-07-27 11:59:29 -04:00
Lincoln Stein
c4a2808a4b use same logging infrastructure for uvicorn and backend 2023-07-27 11:24:07 -04:00
Martin Kristiansen
218b6d0546 Apply black 2023-07-27 10:54:01 -04:00
Lincoln Stein
b8f43f444a implemented startup sanity checks on core models 2023-07-26 08:26:29 -04:00
psychedelicious
509514f11d feat(api): display warning when port is in use 2023-07-19 13:29:31 -04:00
psychedelicious
c557402dbb feat(api): use next available port
Resolves #3515

@ebr @brandonrising can't imagine this would cause issues but just FYI
2023-07-19 13:29:31 -04:00