Commit Graph

66 Commits

Author SHA1 Message Date
Lincoln Stein
8aefe2cefe import_model and list_install_jobs router APIs written 2023-11-25 21:45:59 -05:00
Lincoln Stein
edeea5237b add sql-based model config store and api 2023-11-04 23:03:26 -04:00
psychedelicious
b5940039f3 chore: lint 2023-10-20 12:05:13 +11:00
psychedelicious
0cda7943fa feat(api): add workflow_images junction table
similar to boards, images and workflows may be associated via junction table
2023-10-20 12:05:13 +11:00
psychedelicious
c2da74c587 feat: add workflows table & service 2023-10-20 12:05:13 +11:00
psychedelicious
402cf9b0ee feat: refactor services folder/module structure
Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
2023-10-12 12:15:06 -04:00
psychedelicious
88bee96ca3 feat(backend): rename db.py to sqlite.py 2023-10-12 12:15:06 -04:00
psychedelicious
2a35d93a4d feat(backend): organise service dependencies
**Service Dependencies**

Services that depend on other services now access those services via the `Invoker` object. This object is provided to the service as a kwarg to its `start()` method.

Until now, most services did not utilize this feature, and several services required their dependencies to be initialized and passed in on init.

Additionally, _all_ services are now registered as invocation services - including the low-level services. This obviates issues with inter-dependent services we would otherwise experience as we add workflow storage.

**Database Access**

Previously, we were passing in a separate sqlite connection and corresponding lock as args to services in their init. A good amount of posturing was done in each service that uses the db.

These objects, along with the sqlite startup and cleanup logic, is now abstracted into a simple `SqliteDatabase` class. This creates the shared connection and lock objects, enables foreign keys, and provides a `clean()` method to do startup db maintenance.

This is not a service as it's only used by sqlite services.
2023-10-12 12:15:06 -04:00
Lincoln Stein
25a71a1791
Merge branch 'main' into refactor/rename-get-logger 2023-09-23 14:49:07 -07:00
psychedelicious
b7938d9ca9
feat: queued generation (#4502)
* fix(config): fix typing issues in `config/`

`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere

`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)

* feat: queued generation and batches

Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.

* chore: flake8, isort, black

* fix(nodes): fix incorrect service stop() method

* fix(nodes): improve names of a few variables

* fix(tests): fix up tests after changes to batches/queue

* feat(tests): add unit tests for session queue helper functions

* feat(ui): dynamic prompts is always enabled

* feat(queue): add queue_status_changed event

* feat(ui): wip queue graphs

* feat(nodes): move cleanup til after invoker startup

* feat(nodes): add cancel_by_batch_ids

* feat(ui): wip batch graphs & UI

* fix(nodes): remove `Batch.batch_id` from required

* fix(ui): cleanup and use fixedCacheKey for all mutations

* fix(ui): remove orphaned nodes from canvas graphs

* fix(nodes): fix cancel_by_batch_ids result count

* fix(ui): only show cancel batch tooltip when batches were canceled

* chore: isort

* fix(api): return `[""]` when dynamic prompts generates no prompts

Just a simple fallback so we always have a prompt.

* feat(ui): dynamicPrompts.combinatorial is always on

There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.

* feat: add queue_id & support logic

* feat(ui): fix upscale button

It prepends the upscale operation to queue

* feat(nodes): return queue item when enqueuing a single graph

This facilitates one-off graph async workflows in the client.

* feat(ui): move controlnet autoprocess to queue

* fix(ui): fix non-serializable DOMRect in redux state

* feat(ui): QueueTable performance tweaks

* feat(ui): update queue list

Queue items expand to show the full queue item. Just as JSON for now.

* wip threaded session_processor

* feat(nodes,ui): fully migrate queue to session_processor

* feat(nodes,ui): add processor events

* feat(ui): ui tweaks

* feat(nodes,ui): consolidate events, reduce network requests

* feat(ui): cleanup & abstract queue hooks

* feat(nodes): optimize batch permutation

Use a generator to do only as much work as is needed.

Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.

The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.

* feat(ui): add seed behaviour parameter

This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt

"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.

* fix(ui): remove extraneous random seed nodes from linear graphs

* fix(ui): fix controlnet autoprocess not working when queue is running

* feat(queue): add timestamps to queue status updates

Also show execution time in queue list

* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem

This allows for much simpler handling of queue items.

* feat(api): deprecate sessions router

* chore(backend): tidy logging in `dependencies.py`

* fix(backend): respect `use_memory_db`

* feat(backend): add `config.log_sql` (enables sql trace logging)

* feat: add invocation cache

Supersedes #4574

The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.

## Results

This feature provides anywhere some significant to massive performance improvement.

The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.

## Overview

A new `invocation_cache` service is added to handle the caching. There's not much to it.

All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.

The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.

To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.

## In-Memory Implementation

An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.

Max node cache size is added as `node_cache_size` under the `Generation` config category.

It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.

Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.

## Node Definition

The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.

Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.

The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.

## One Gotcha

Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.

If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.

## Linear UI

The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.

This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.

This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.

## Workflow Editor

All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.

The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.

Users should consider saving their workflows after loading them in and having them updated.

## Future Enhancements - Callback

A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.

This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.

## Future Enhancements - Persisted Cache

Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.

* fix(ui): fix queue list item width

* feat(nodes): do not send the whole node on every generator progress

* feat(ui): strip out old logic related to sessions

Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...

* feat(ui): fix up param collapse labels

* feat(ui): click queue count to go to queue tab

* tidy(queue): update comment, query format

* feat(ui): fix progress bar when canceling

* fix(ui): fix circular dependency

* feat(nodes): bail on node caching logic if `node_cache_size == 0`

* feat(nodes): handle KeyError on node cache pop

* feat(nodes): bypass cache codepath if caches is disabled

more better no do thing

* fix(ui): reset api cache on connect/disconnect

* feat(ui): prevent enqueue when no prompts generated

* feat(ui): add queue controls to workflow editor

* feat(ui): update floating buttons & other incidental UI tweaks

* fix(ui): fix missing/incorrect translation keys

* fix(tests): add config service to mock invocation services

invoking needs access to `node_cache_size` to occur

* optionally remove pause/resume buttons from queue UI

* option to disable prepending

* chore(ui): remove unused file

* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-09-20 15:09:24 +10:00
Martin Kristiansen
5615c31799 isort wip 2023-09-12 13:01:58 -04:00
Lincoln Stein
45d172d5a8
Merge branch 'main' into refactor/rename-get-logger 2023-08-20 16:08:32 -04:00
Martin Kristiansen
537ae2f901 Resolving merge conflicts for flake8 2023-08-18 15:52:04 +10:00
Lincoln Stein
1d107f30e5 remove getLogger() completely 2023-08-17 19:17:38 -04:00
psychedelicious
d09dfc3e9b fix(api): use db_location instead of db_path_string
This may just be the SQLite memory sentinel value.
2023-08-06 14:09:04 +10:00
psychedelicious
9ba50130a1 fix(api): fix db location types
The services all want strings instead of `Path`s; create variable for the string representation of the path provided by the config services.
2023-08-06 14:09:04 +10:00
psychedelicious
d4cf2d2666 fix(api): fix ApiDependencies.invoker types
ApiDependencies.invoker` provides typing for the API's services layer. Marking it `Optional` results in all the routes seeing it as optional, which is not good.

Instead of marking it optional to satisfy the initial assignment to `None`, we can just skip the initial assignment. This preserves the IDE hinting in API layer and is types-legal.
2023-08-06 14:09:04 +10:00
Lincoln Stein
8fc75a71ee integrate correctly into app API and add features
- Create abstract base class InvocationStatsServiceBase
- Store InvocationStatsService in the InvocationServices object
- Collect and report stats on simultaneous graph execution
  independently for each graph id
- Track VRAM usage for each node
- Handle cancellations and other exceptions gracefully
2023-08-02 18:10:52 -04:00
Alexandre Macabies
50e00feceb Add missing Optional on a few nullable fields. 2023-07-30 16:25:12 +02:00
Martin Kristiansen
218b6d0546 Apply black 2023-07-27 10:54:01 -04:00
Lincoln Stein
9370572169 prettify startup messages 2023-07-20 22:45:35 -04:00
psychedelicious
48a031dbaf fix(nodes): fix typing of configuration service 2023-07-16 10:52:18 +10:00
psychedelicious
c7b547ea3e feat(nodes): remove references to restoration services
- remove restoration services
- remove the restore faces nodes
- update tests
2023-07-16 01:12:39 +10:00
psychedelicious
50bef87da7 feat(db,nodes,api): refactor metadata
Metadata for the Linear UI is now sneakily provided via a `MetadataAccumulator` node, which the client populates / hooks up while building the graph.

Additionally, we provide the unexpanded graph with the metadata API response.

Both of these are embedded into the PNGs.

- Remove `metadata` from `ImageDTO`
- Split up the `images/` routes to accomodate this; metadata is only retrieved per-image
- `images/{image_name}` now gets the DTO
- `images/{image_name}/metadata` gets the new metadata
- `images/{image_name}/full` gets the full-sized image file
- Remove old metadata service
- Add `MetadataAccumulator` node, `CoreMetadataField`, hook up to `LatentsToImage` node
- Add `get_raw()` method to `ItemStorage`, retrieves the row from DB as a string, no pydantic parsing
- Update `images`related services to handle storing and retrieving the new metadata
- Add `get_metadata_graph_from_raw_session` which extracts the `graph` from `session` without needing to hydrate the session in pydantic, in preparation for providing it as metadata; also removes all references to the `MetadataAccumulator` node
2023-07-13 15:40:05 +10:00
Lincoln Stein
8e8f9cce0f print version when --version provided at command line 2023-07-07 20:47:29 -04:00
psychedelicious
be3bdae847 fix: resolve rebase conflicts 2023-06-22 16:25:49 +10:00
psychedelicious
d604d986f9 feat(db, api): update get_board_for_image & service dependencies
- previously was `get_boards_for_image`, returning a list of `BoardDTO`, now returns a single `board_id`
2023-06-22 16:25:49 +10:00
psychedelicious
72e9ced889 feat(nodes): add boards and board_images services 2023-06-22 16:25:49 +10:00
maryhipp
a1671519d5 board CRUD 2023-06-22 16:25:49 +10:00
Lincoln Stein
6652f3405b merge with main 2023-06-08 21:08:43 -04:00
Lincoln Stein
2a6d11e645 create databases directory on startup 2023-06-08 07:17:54 -04:00
Lincoln Stein
31e97ead2a move invokeai.db to ~/invokeai/databases
- The invokeai.db database file has now been moved into
  `INVOKEAIROOT/databases`. Using plural here for possible
  future with more than one database file.

- Removed a few dangling debug messages that appeared during
  testing.

- Rebuilt frontend to test web.
2023-06-03 20:25:34 -04:00
Lincoln Stein
98773b20ac merge with main 2023-06-01 18:09:49 -04:00
Lincoln Stein
dc54cbb1fc
Merge branch 'main' into release/make-web-dist-startable 2023-05-29 14:16:10 -04:00
psychedelicious
33a0af4637 feat(nodes): add nameservice
Currenly only used to make names for images, but when latents, conditioning, etc are managed in DB, will do the same for them.

Intended to eventually support custom naming schemes.
2023-05-28 20:19:56 -04:00
Lincoln Stein
5f8f51436a merge with main; fix conflicts 2023-05-25 22:40:45 -04:00
Lincoln Stein
9110838fe4
Merge branch 'main' into release/make-web-dist-startable 2023-05-25 19:06:09 -04:00
psychedelicious
ff6b345d45 fix(nodes): rebase fixes 2023-05-24 11:30:47 -04:00
psychedelicious
d2c223de8f feat(nodes): move fully* to new images service
* except i haven't rebuilt inpaint in latents
2023-05-24 11:30:47 -04:00
psychedelicious
5de3c41d19 feat(nodes): add metadata handling 2023-05-24 11:30:47 -04:00
psychedelicious
5bf9891553 feat(nodes): it works 2023-05-24 11:30:47 -04:00
psychedelicious
f7804f6126 feat(nodes): add logger to images service 2023-05-24 11:30:47 -04:00
psychedelicious
d14b02e93f feat(logger): fix logger type issues 2023-05-24 11:30:47 -04:00
psychedelicious
1b75d899ae feat(nodes): wip image storage implementation 2023-05-24 11:30:47 -04:00
psychedelicious
9c89d3452c feat(nodes): add high-level images service
feat(nodes): add ResultsServiceABC & SqliteResultsService

**Doesn't actually work bc of circular imports. Can't even test it.**

- add a base class for ResultsService and SQLite implementation
- use `graph_execution_manager` `on_changed` callback to keep `results` table in sync

fix(nodes): fix results service bugs

chore(ui): regen api

fix(ui): fix type guards

feat(nodes): add `result_type` to results table, fix types

fix(nodes): do not shadow `list` builtin

feat(nodes): add results router

It doesn't work due to circular imports still

fix(nodes): Result class should use outputs classes, not fields

feat(ui): crude results router

fix(ui): send to canvas in currentimagebuttons not working

feat(nodes): add core metadata builder

feat(nodes): add design doc

feat(nodes): wip latents db stuff

feat(nodes): images_db_service and resources router

feat(nodes): wip images db & router

feat(nodes): update image related names

feat(nodes): update urlservice

feat(nodes): add high-level images service
2023-05-24 11:30:47 -04:00
Lincoln Stein
d2dc1ed26f make InvokeAI package installable
This commit makes InvokeAI 3.0 to be installable via PyPi.org and the
installer script.

Main changes.

1. Move static web pages into `invokeai/frontend/web` and modify the
API to look for them there. This allows pip to copy the files into the
distribution directory so that user no longer has to be in repo root
to launch.

2. Update invoke.sh and invoke.bat to launch the new web application
properly. This also changes the wording for launching the CLI from
"generate images" to "explore the InvokeAI node system," since I would
not recommend using the CLI to generate images routinely.

3. Fix a bug in the checkpoint converter script that was identified
during testing.

4. Better error reporting when checkpoint converter fails.

5. Rebuild front end.
2023-05-22 17:51:47 -04:00
Lincoln Stein
d96175d127 resolve some undefined symbols in model_cache 2023-05-18 14:31:47 -04:00
Eugene
9e4e386c9b web and formatting fixes
- remove non-existent import InvokeAIWebConfig
- fix workflow file formatting
- clean up whitespace
2023-05-17 19:12:03 -04:00
Sergey Borisov
79fecba274 Fix model manager initialization in web ui 2023-05-12 23:05:08 +03:00
Lincoln Stein
90054ddf0d use InvokeAISettings for app-wide configuration 2023-05-03 22:30:30 -04:00