Compare commits

..

154 Commits

Author SHA1 Message Date
53e1199902 prevent potential infinite recursion on exceptions raised by event handlers 2023-10-12 14:34:35 -04:00
0f9c676fcb remove download queue change_priority() calls completely 2023-10-12 14:03:28 -04:00
a51b165a40 clean up model downloader status locking to avoid race conditions 2023-10-12 13:07:09 -04:00
5f80d4dd07 Merge branch 'lstein/model-manager-refactor' of github.com:invoke-ai/InvokeAI into lstein/model-manager-refactor 2023-10-11 23:12:20 -04:00
b708aef5cc misc small fixes requested by Ryan 2023-10-11 23:02:22 -04:00
aace679505 Update invokeai/app/services/model_convert.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-10-11 22:59:47 -04:00
a2079bdd70 Update docs/installation/050_INSTALLING_MODELS.md
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-10-11 22:59:35 -04:00
0a0412f75f restore CLI to broken state 2023-10-11 22:57:08 -04:00
e079cc9f07 add back source URL validation to download job hierarchy 2023-10-11 22:42:07 -04:00
76aa19a0f7 first draft of documentation finished 2023-10-11 15:39:59 -04:00
71e7e61c0f add documentation for model record service and loader 2023-10-10 16:30:38 -04:00
67607f053d fix issues with module import order breaking pytest node tests 2023-10-09 22:43:00 -04:00
4bab724288 fix broken import 2023-10-09 16:45:32 -04:00
e50a257198 merge with main 2023-10-09 14:02:19 -04:00
4149d357bf refactor installer class hierarchy 2023-10-09 13:56:28 -04:00
33d4756c48 improve selection of huggingface repo id files to download 2023-10-09 08:53:03 -04:00
3962914f7d merge with main 2023-10-09 00:30:55 -04:00
3644d40e04 Merge branch 'lstein/model-manager-refactor' of github.com:invoke-ai/InvokeAI into lstein/model-manager-refactor 2023-10-09 00:28:48 -04:00
fe1038665c address all PR 4252 comments from ryan through October 5 2023-10-09 00:28:21 -04:00
a80ff75b52 Update invokeai/app/invocations/model.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-10-08 22:55:22 -04:00
ce2baa36a9 port support for AutoencoderTiny models 2023-10-08 19:49:03 -04:00
bccfe8b3cc fix some type mismatches introduces by reorg 2023-10-08 19:30:04 -04:00
e5b2bc8532 refactor download queue jobs 2023-10-08 16:39:23 -04:00
a64a34b49a add support for repo_id subfolders 2023-10-08 12:45:06 -04:00
51060543dc support clipvision image encoder downloading 2023-10-07 19:13:41 -04:00
7f68f58cf7 restore printing of version when invokeai-web and invokeai called with --version 2023-10-07 18:23:34 -04:00
432231ea18 merge with main 2023-10-07 16:46:32 -04:00
44216381cb fix conversion call 2023-10-07 15:29:28 -04:00
00e85bcd67 make autoimport directory optional, defaulting to inactive 2023-10-07 14:00:38 -04:00
6303f74616 allow user to select main database or external file for model record/config db 2023-10-07 13:31:21 -04:00
8e06088152 refactor services 2023-10-06 18:10:20 -04:00
9cbc62d8d3 fix reorganized module dependencies 2023-10-04 23:53:29 -04:00
cd5d3e30c7 refactor model_manager_service.py into small functional modules 2023-10-04 23:45:58 -04:00
cb0fdf3394 refactor model install job class hierarchy 2023-10-04 14:51:59 -04:00
a180c0f241 check model hash before and after moving in filesystem 2023-10-04 09:40:15 -04:00
16ec7a323b fix type mismatches in download_manager service 2023-10-04 08:58:49 -04:00
de90d4068b Merge branch 'lstein/model-manager-refactor' of github.com:invoke-ai/InvokeAI into lstein/model-manager-refactor 2023-10-04 08:42:07 -04:00
4624de0151 Merge branch 'main' into lstein/model-manager-refactor 2023-10-03 22:44:22 -04:00
459f0238dd multiple minor fixes 2023-10-03 22:43:19 -04:00
e3912e8826 replace config.ram_cache_size with config.ram and similarly for vram 2023-10-03 15:36:23 -04:00
062a6ed180 prevent crash on windows due to lack of os.pathconf call 2023-10-03 15:30:07 -04:00
48c3d926b0 make textual inversion training work with new model manager 2023-10-02 22:23:49 -04:00
63f6c12aa3 make merge script read invokeai.yaml when default root passed 2023-10-02 21:22:43 -04:00
c91429d4ab merge with main 2023-10-02 21:11:07 -04:00
230ee18536 do not ignore keyboard interrupt while scanning models 2023-09-30 14:21:39 -04:00
c025c9c4ed speed up model scanning at startup 2023-09-30 13:57:13 -04:00
acaaff4b7e make model merge script work with new model manager 2023-09-30 12:24:39 -04:00
807ae821ea more type mismatch fixes 2023-09-30 10:19:22 -04:00
208d390779 almost all type mismatches fixed 2023-09-29 19:23:08 -04:00
cbf0310a2c add README explaining reorg of tests directory 2023-09-29 01:17:07 -04:00
4555aec17c remove unused code from invokeai.backend.model_manager.storage.yaml 2023-09-29 01:07:18 -04:00
3b832f1db2 fix one more type mismatch in probe module 2023-09-29 00:44:50 -04:00
2f16a2c35d fix migrate script and type mismatches in probe, config and loader 2023-09-29 00:09:07 -04:00
81fce18c73 reorder pytests to prevent fixture race condition 2023-09-28 09:55:20 -04:00
0b75a4fbb5 resolve merge conflicts 2023-09-27 22:51:06 -04:00
2e9a7b0454 Merge branch 'main' into lstein/model-manager-refactor 2023-09-26 00:15:37 -04:00
1d6a4e7ee7 add tests for model installation events 2023-09-26 00:04:27 -04:00
effced8560 added cancel_all and prune model install operations to router API 2023-09-25 17:34:59 -04:00
ac4634000a merge with main & resolve conflicts 2023-09-25 17:02:21 -04:00
f9b92ddc12 resolve conflicts with get_logger() code changes from main 2023-09-24 10:34:06 -04:00
8bc1ca046c allow priority to be set at install job submission time 2023-09-24 10:08:21 -04:00
6edee2d22b automatically convert models.yaml to new format 2023-09-23 17:00:53 -04:00
ab58eb29c5 resolve conflicts with ip-adapter change 2023-09-23 13:00:47 -04:00
d5d517d2fa correctly download the selected version of a civitai model 2023-09-22 22:54:46 -04:00
d2cdbe5c4e configure script now working 2023-09-22 22:15:42 -04:00
07ddd601e1 fix install of models with relative paths 2023-09-22 11:49:18 -04:00
c9cd418ed8 add/delete from command line working; training words downloaded 2023-09-21 18:18:35 -04:00
30aea54f1a remove debug statement 2023-09-21 12:05:51 -04:00
3199409fd3 TUI installer functional; minor cosmetic work needed 2023-09-20 21:41:45 -04:00
3402cf6542 preserve description in metadata when installing a starter model 2023-09-20 20:30:35 -04:00
ed91f48a92 TUI installer more or less working 2023-09-20 17:07:11 -07:00
de666fd7bc move incorrectly placed models into correct directory at startup time 2023-09-19 01:18:03 -04:00
73bc088fa7 blackify 2023-09-19 00:54:14 -04:00
0c8849155e Merge branch 'main' into lstein/model-manager-refactor 2023-09-18 22:38:55 -04:00
d1382f232c fasthash produces same results on windows & linux 2023-09-18 19:38:33 -07:00
151ba02022 fix models.yaml version assertion error in pytests 2023-09-17 17:22:50 -04:00
d051c0868e attempt to fix flake8 lint errors 2023-09-17 17:13:56 -04:00
238d7fa0ee add models.yaml conversion script 2023-09-17 16:26:45 -04:00
f0ce559d28 add install job control to web API 2023-09-17 15:28:37 -04:00
e880f4bcfb add logs to confirm that event info is being sent to bus 2023-09-16 22:38:37 -04:00
539776a15a import_model API now working 2023-09-16 22:17:39 -04:00
c029534243 all methods in router API now tested and working 2023-09-16 19:43:01 -04:00
dc683475d4 loading and conversions of checkpoints working 2023-09-16 16:27:57 -04:00
c090c5f907 update_model and delete_model working; convert is WIP 2023-09-16 12:22:23 -04:00
db7fdc3555 fix more isort issues 2023-09-15 22:22:43 -04:00
b9a90fbd28 blackify and isort 2023-09-15 22:19:29 -04:00
08952b9aa0 Merge branch 'main' into lstein/model-manager-refactor 2023-09-15 22:18:48 -04:00
b7789bb7bb list_models() API call now working 2023-09-15 21:58:28 -04:00
3529925234 services rewritten; starting work on routes 2023-09-15 18:22:24 -04:00
a033ccc776 blackify 2023-09-14 21:12:41 -04:00
716a1b6423 model_manager_service now mostly type correct 2023-09-14 21:12:31 -04:00
171d789646 model loader autoscans models_dir on initialization 2023-09-14 14:07:14 -05:00
ac88863fd2 fix exception traceback reporting 2023-09-14 10:52:26 -05:00
27dcd89c90 merge with main; model_manager_service.py needs to be rewritten 2023-09-13 20:19:14 -04:00
4b932b275d refactor create_download_job; override probe info in install call 2023-09-13 18:53:33 -05:00
6d8b2a7385 pytests mostly working; model_manager_service needs rewriting 2023-09-11 23:47:24 -04:00
7430d87301 loader working 2023-09-10 23:11:25 -04:00
b583bddeb1 loading works -- web app broken 2023-09-10 22:59:58 -04:00
f454304c91 make it possible to pause/resume repo_id downloads 2023-09-10 17:20:47 -04:00
8052f2eb5d Merge branch 'main' into lstein/model-manager-refactor 2023-09-10 13:01:19 -04:00
8636015d92 increase download chunksize for better speed 2023-09-09 22:15:34 -04:00
b7a6a536e6 fix flake8 warnings 2023-09-09 21:26:09 -04:00
b2892f9068 incorporate civitai metadata into model config 2023-09-09 21:17:55 -04:00
3582cfa267 make download manager optional in InvokeAIServices during development 2023-09-09 14:06:36 -04:00
64424c6db0 install of repo_ids records author, tags and license 2023-09-09 14:02:05 -04:00
598fe8101e wire together download and install; now need to write install events 2023-09-09 11:42:07 -04:00
b7ca983f9c blackify 2023-09-07 21:14:24 -04:00
2165d55a67 add checks for malformed URLs and malicious content dispositions 2023-09-07 21:14:10 -04:00
a7aca29765 implement regression tests for pause/cancel/error conditions 2023-09-07 17:06:59 -04:00
79b2423159 last flake8 fix - why is local flake8 not identical to git flake8? 2023-09-07 09:38:15 -04:00
b09e012baa Merge branch 'lstein/model-manager-refactor' of github.com:invoke-ai/InvokeAI into lstein/model-manager-refactor 2023-09-07 09:20:32 -04:00
c9a016f1a2 more flake8 fixes 2023-09-07 09:20:23 -04:00
d979c50de3 Merge branch 'main' into lstein/model-manager-refactor 2023-09-07 09:17:16 -04:00
11ead34022 fix flake8 warnings 2023-09-07 09:16:56 -04:00
82499d4ef0 fix various typing errors in api dependencies initialization 2023-09-06 23:59:45 -04:00
3448edac1a fix progress reporting for repo_ids 2023-09-06 19:33:04 -04:00
626acd5105 remove unecessary HTTP probe for repo_id model component sizes 2023-09-06 19:18:15 -04:00
404cfe0eb9 add download manager to invoke services 2023-09-06 18:47:30 -04:00
e9074176bd add unit tests for queued model download 2023-09-06 18:25:04 -04:00
ca6d24810c resolve merge conflicts 2023-09-04 21:13:09 -04:00
57552deab2 threaded repo_id download working; error conditions not tested 2023-09-04 21:10:21 -04:00
8f51adc737 chore: black 2023-09-05 10:22:46 +10:00
d1c5990abe merge and resolve conflicts 2023-09-04 18:50:06 -04:00
8fc20925b5 added download manager service and began repo_id download 2023-09-04 18:26:28 -04:00
869f310ae7 download of individual files working 2023-09-02 14:52:21 -04:00
e6512e1b9a add ABC for download manager 2023-08-30 09:08:31 -04:00
8396bf7c99 Merge branch 'main' into lstein/model-manager-refactor 2023-08-29 21:27:19 -04:00
97f2e778ee make ModelSearch pydantic 2023-08-24 13:37:49 -04:00
93cef55964 blackify 2023-08-23 19:53:21 -04:00
055ad0101d merge with main; resolve conflicts 2023-08-23 19:45:25 -04:00
9adc897302 added install module 2023-08-23 19:41:25 -04:00
4b3d54dbc0 install ABC written 2023-08-23 08:44:22 -04:00
6f9bf87a7a reimplement and clean up probe class 2023-08-22 22:24:07 -04:00
f023e342ef added main templates 2023-08-20 21:34:43 -04:00
1784aeb343 fix flake8 errors 2023-08-20 16:38:41 -04:00
0deb3f9e2a Merge branch 'main' into lstein/model-manager-refactor 2023-08-20 16:15:14 -04:00
916cc26193 partial rewrite of checkpoint template creator 2023-08-16 21:21:42 -04:00
e83d00595d module skeleton written 2023-08-14 21:49:32 -04:00
1c7d9dbf40 start installer module 2023-08-14 21:10:45 -04:00
7db71ed42e rename modules 2023-08-14 20:55:30 -04:00
c56fb38855 added ability to force config class returned by make_config() 2023-08-13 19:08:50 -04:00
155d9fcb13 Merge branch 'lstein/model-manager-refactor' of github.com:invoke-ai/InvokeAI into lstein/model-manager-refactor 2023-08-13 18:49:38 -04:00
81da3d3b23 change model field name "hash" to "id" 2023-08-13 18:49:30 -04:00
51e84e6986 Merge branch 'main' into lstein/model-manager-refactor 2023-08-13 18:17:28 -04:00
1ea0ccb7b9 add SQL backend 2023-08-13 18:15:49 -04:00
5434dcd273 fix test to work with string paths 2023-08-13 13:36:31 -04:00
0c7430048e change paths to str to make json serializable 2023-08-13 13:26:19 -04:00
6c9b9e1787 Merge branch 'main' into lstein/model-manager-refactor 2023-08-12 20:13:53 -04:00
b2894b5270 add class docstring and blackify 2023-08-12 20:13:00 -04:00
32958db6f6 add YAML file storage backend 2023-08-12 20:06:00 -04:00
e8815a1676 rename ModelConfig to ModelConfigFactory 2023-08-12 18:30:14 -04:00
e8edb0d434 add ABC for config storage 2023-08-12 17:50:55 -04:00
b5d97b18f1 blackify 2023-08-12 17:24:03 -04:00
ae56c000fc define model configuration classes 2023-08-12 17:11:34 -04:00
477 changed files with 23359 additions and 27207 deletions

1
.gitattributes vendored
View File

@ -2,4 +2,3 @@
# Only affects text files and ignores other file types. # Only affects text files and ignores other file types.
# For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/ # For more info see: https://www.aleksandrhovhannisyan.com/blog/crlf-vs-lf-normalizing-line-endings-in-git/
* text=auto * text=auto
docker/** text eol=lf

View File

@ -28,7 +28,7 @@ jobs:
run: twine check dist/* run: twine check dist/*
- name: check PyPI versions - name: check PyPI versions
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/') if: github.ref == 'refs/heads/main' || github.ref == 'refs/heads/v2.3'
run: | run: |
pip install --upgrade requests pip install --upgrade requests
python -c "\ python -c "\

12
.gitignore vendored
View File

@ -1,5 +1,8 @@
.idea/ .idea/
# ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh
# Byte-compiled / optimized / DLL files # Byte-compiled / optimized / DLL files
__pycache__/ __pycache__/
*.py[cod] *.py[cod]
@ -133,10 +136,12 @@ celerybeat.pid
# Environments # Environments
.env .env
.venv* .venv
env/ env/
venv/ venv/
ENV/ ENV/
env.bak/
venv.bak/
# Spyder project settings # Spyder project settings
.spyderproject .spyderproject
@ -181,6 +186,11 @@ cython_debug/
.scratch/ .scratch/
.vscode/ .vscode/
# ignore environment.yml and requirements.txt
# these are links to the real files in environments-and-requirements
environment.yml
requirements.txt
# source installer files # source installer files
installer/*zip installer/*zip
installer/install.bat installer/install.bat

View File

@ -123,7 +123,7 @@ and go to http://localhost:9090.
### Command-Line Installation (for developers and users familiar with Terminals) ### Command-Line Installation (for developers and users familiar with Terminals)
You must have Python 3.10 through 3.11 installed on your machine. Earlier or You must have Python 3.9 through 3.11 installed on your machine. Earlier or
later versions are not supported. later versions are not supported.
Node.js also needs to be installed along with yarn (can be installed with Node.js also needs to be installed along with yarn (can be installed with
the command `npm install -g yarn` if needed) the command `npm install -g yarn` if needed)

View File

@ -1,15 +1,13 @@
## Make a copy of this file named `.env` and fill in the values below. ## Make a copy of this file named `.env` and fill in the values below.
## Any environment variables supported by InvokeAI can be specified here, ## Any environment variables supported by InvokeAI can be specified here.
## in addition to the examples below.
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data. # INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
# Outputs will also be stored here by default. # Outputs will also be stored here by default.
# This **must** be an absolute path. # This **must** be an absolute path.
INVOKEAI_ROOT= INVOKEAI_ROOT=
# Get this value from your HuggingFace account settings page. HUGGINGFACE_TOKEN=
# HUGGING_FACE_HUB_TOKEN=
## optional variables specific to the docker setup. ## optional variables specific to the docker setup
# GPU_DRIVER=cuda # GPU_DRIVER=cuda
# CONTAINER_UID=1000 # CONTAINER_UID=1000

View File

@ -2,7 +2,7 @@
## Builder stage ## Builder stage
FROM library/ubuntu:23.04 AS builder FROM library/ubuntu:22.04 AS builder
ARG DEBIAN_FRONTEND=noninteractive ARG DEBIAN_FRONTEND=noninteractive
RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache
@ -10,7 +10,7 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt,sharing=locked \ --mount=type=cache,target=/var/lib/apt,sharing=locked \
apt update && apt-get install -y \ apt update && apt-get install -y \
git \ git \
python3-venv \ python3.10-venv \
python3-pip \ python3-pip \
build-essential build-essential
@ -37,7 +37,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
elif [ "$GPU_DRIVER" = "rocm" ]; then \ elif [ "$GPU_DRIVER" = "rocm" ]; then \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \ extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/rocm5.4.2"; \
else \ else \
extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu121"; \ extra_index_url_arg="--extra-index-url https://download.pytorch.org/whl/cu118"; \
fi &&\ fi &&\
pip install $extra_index_url_arg \ pip install $extra_index_url_arg \
torch==$TORCH_VERSION \ torch==$TORCH_VERSION \
@ -70,7 +70,7 @@ RUN --mount=type=cache,target=/usr/lib/node_modules \
#### Runtime stage --------------------------------------- #### Runtime stage ---------------------------------------
FROM library/ubuntu:23.04 AS runtime FROM library/ubuntu:22.04 AS runtime
ARG DEBIAN_FRONTEND=noninteractive ARG DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1 ENV PYTHONUNBUFFERED=1
@ -85,7 +85,6 @@ RUN apt update && apt install -y --no-install-recommends \
iotop \ iotop \
bzip2 \ bzip2 \
gosu \ gosu \
magic-wormhole \
libglib2.0-0 \ libglib2.0-0 \
libgl1-mesa-glx \ libgl1-mesa-glx \
python3-venv \ python3-venv \
@ -95,6 +94,10 @@ RUN apt update && apt install -y --no-install-recommends \
libstdc++-10-dev &&\ libstdc++-10-dev &&\
apt-get clean && apt-get autoclean apt-get clean && apt-get autoclean
# globally add magic-wormhole
# for ease of transferring data to and from the container
# when running in sandboxed cloud environments; e.g. Runpod etc.
RUN pip install magic-wormhole
ENV INVOKEAI_SRC=/opt/invokeai ENV INVOKEAI_SRC=/opt/invokeai
ENV VIRTUAL_ENV=/opt/venv/invokeai ENV VIRTUAL_ENV=/opt/venv/invokeai
@ -117,7 +120,9 @@ WORKDIR ${INVOKEAI_SRC}
RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc RUN cd /usr/lib/$(uname -p)-linux-gnu/pkgconfig/ && ln -sf opencv4.pc opencv.pc
RUN python3 -c "from patchmatch import patch_match" RUN python3 -c "from patchmatch import patch_match"
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R 1000:1000 ${INVOKEAI_ROOT} # Create unprivileged user and make the local dir
RUN useradd --create-home --shell /bin/bash -u 1000 --comment "container local user" invoke
RUN mkdir -p ${INVOKEAI_ROOT} && chown -R invoke:invoke ${INVOKEAI_ROOT}
COPY docker/docker-entrypoint.sh ./ COPY docker/docker-entrypoint.sh ./
ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"] ENTRYPOINT ["/opt/invokeai/docker-entrypoint.sh"]

View File

@ -5,7 +5,7 @@ All commands are to be run from the `docker` directory: `cd docker`
#### Linux #### Linux
1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`) 1. Ensure builkit is enabled in the Docker daemon settings (`/etc/docker/daemon.json`)
2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://docs.docker.com/compose/install/linux/#install-using-the-repository). 2. Install the `docker compose` plugin using your package manager, or follow a [tutorial](https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-compose-on-ubuntu-22-04).
- The deprecated `docker-compose` (hyphenated) CLI continues to work for now. - The deprecated `docker-compose` (hyphenated) CLI continues to work for now.
3. Ensure docker daemon is able to access the GPU. 3. Ensure docker daemon is able to access the GPU.
- You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) - You may need to install [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
@ -20,6 +20,7 @@ This is done via Docker Desktop preferences
## Quickstart ## Quickstart
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to: 1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
a. the desired location of the InvokeAI runtime directory, or a. the desired location of the InvokeAI runtime directory, or
b. an existing, v3.0.0 compatible runtime directory. b. an existing, v3.0.0 compatible runtime directory.
@ -41,22 +42,20 @@ The Docker daemon on the system must be already set up to use the GPU. In case o
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used. Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated. You can also set these values in `docker compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended): Example (most values are optional):
```bash ```
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
HUGGINGFACE_TOKEN=the_actual_token HUGGINGFACE_TOKEN=the_actual_token
CONTAINER_UID=1000 CONTAINER_UID=1000
GPU_DRIVER=cuda GPU_DRIVER=cuda
``` ```
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
## Even Moar Customizing! ## Even Moar Customizing!
See the `docker-compose.yml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below. See the `docker compose.yaml` file. The `command` instruction can be uncommented and used to run arbitrary startup commands. Some examples below.
### Reconfigure the runtime directory ### Reconfigure the runtime directory
@ -64,7 +63,7 @@ Can be used to download additional models from the supported model list
In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory In conjunction with `INVOKEAI_ROOT` can be also used to initialize a runtime directory
```yaml ```
command: command:
- invokeai-configure - invokeai-configure
- --yes - --yes
@ -72,7 +71,7 @@ command:
Or install models: Or install models:
```yaml ```
command: command:
- invokeai-model-install - invokeai-model-install
``` ```

View File

@ -5,7 +5,7 @@ build_args=""
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env) [[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
echo "docker compose build args:" echo "docker-compose build args:"
echo $build_args echo $build_args
docker compose build $build_args docker-compose build $build_args

View File

@ -19,7 +19,7 @@ set -e -o pipefail
# Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS. # Default UID: 1000 chosen due to popularity on Linux systems. Possibly 501 on MacOS.
USER_ID=${CONTAINER_UID:-1000} USER_ID=${CONTAINER_UID:-1000}
USER=ubuntu USER=invoke
usermod -u ${USER_ID} ${USER} 1>/dev/null usermod -u ${USER_ID} ${USER} 1>/dev/null
configure() { configure() {

View File

@ -1,11 +1,8 @@
#!/usr/bin/env bash #!/usr/bin/env bash
set -e set -e
# This script is provided for backwards compatibility with the old docker setup.
# it doesn't do much aside from wrapping the usual docker compose CLI.
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}") SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
cd "$SCRIPTDIR" || exit 1 cd "$SCRIPTDIR" || exit 1
docker compose up --build -d docker-compose up --build -d
docker compose logs -f docker-compose logs -f

View File

@ -488,7 +488,7 @@ sections describe what's new for InvokeAI.
- A choice of installer scripts that automate installation and configuration. - A choice of installer scripts that automate installation and configuration.
See See
[Installation](installation/INSTALLATION.md). [Installation](installation/index.md).
- A streamlined manual installation process that works for both Conda and - A streamlined manual installation process that works for both Conda and
PIP-only installs. See PIP-only installs. See
[Manual Installation](installation/020_INSTALL_MANUAL.md). [Manual Installation](installation/020_INSTALL_MANUAL.md).
@ -657,7 +657,7 @@ sections describe what's new for InvokeAI.
## v1.13 <small>(3 September 2022)</small> ## v1.13 <small>(3 September 2022)</small>
- Support image variations (see [VARIATIONS](deprecated/VARIATIONS.md) - Support image variations (see [VARIATIONS](features/VARIATIONS.md)
([Kevin Gibbons](https://github.com/bakkot) and many contributors and ([Kevin Gibbons](https://github.com/bakkot) and many contributors and
reviewers) reviewers)
- Supports a Google Colab notebook for a standalone server running on Google - Supports a Google Colab notebook for a standalone server running on Google

File diff suppressed because it is too large Load Diff

View File

@ -14,6 +14,7 @@ Once you're setup, for more information, you can review the documentation specif
* #### [InvokeAI Architecure](../ARCHITECTURE.md) * #### [InvokeAI Architecure](../ARCHITECTURE.md)
* #### [Frontend Documentation](./contributingToFrontend.md) * #### [Frontend Documentation](./contributingToFrontend.md)
* #### [Node Documentation](../INVOCATIONS.md) * #### [Node Documentation](../INVOCATIONS.md)
* #### [InvokeAI Model Manager](../MODEL_MANAGER.md)
* #### [Local Development](../LOCAL_DEVELOPMENT.md) * #### [Local Development](../LOCAL_DEVELOPMENT.md)
@ -45,5 +46,5 @@ For backend related work, please reach out to **@blessedcoolant**, **@lstein**,
## **What does the Code of Conduct mean for me?** ## **What does the Code of Conduct mean for me?**
Our [Code of Conduct](../../CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code. Our [Code of Conduct](CODE_OF_CONDUCT.md) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.

View File

@ -211,8 +211,8 @@ Here are the invoke> command that apply to txt2img:
| `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer | | `--facetool <name>` | `-ft <name>` | `-ft gfpgan` | Select face restoration algorithm to use: gfpgan, codeformer |
| `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality | | `--codeformer_fidelity` | `-cf <float>` | `0.75` | Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality |
| `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. | | `--save_original` | `-save_orig` | `False` | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](VARIATIONS.md). | | `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](../features/VARIATIONS.md). |
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](VARIATIONS.md) for now to use this. | | `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](../features/VARIATIONS.md) for now to use this. |
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory | | `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) | | `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) | | `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |

View File

@ -28,9 +28,8 @@ by placing them in the designated directory for the compatible model type
### An Example ### An Example
Here are a few examples to illustrate how it works. All these images Here are a few examples to illustrate how it works. All these images were
were generated using the legacy command-line client and the Stable generated using the command-line client and the Stable Diffusion 1.5 model:
Diffusion 1.5 model:
| Japanese gardener | Japanese gardener &lt;ghibli-face&gt; | Japanese gardener &lt;hoi4-leaders&gt; | Japanese gardener &lt;cartoona-animals&gt; | | Japanese gardener | Japanese gardener &lt;ghibli-face&gt; | Japanese gardener &lt;hoi4-leaders&gt; | Japanese gardener &lt;cartoona-animals&gt; |
| :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: | | :--------------------------------: | :-----------------------------------: | :------------------------------------: | :----------------------------------------: |

View File

@ -82,7 +82,7 @@ format of YAML files can be found
[here](https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/). [here](https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/).
You can fix a broken `invokeai.yaml` by deleting it and running the You can fix a broken `invokeai.yaml` by deleting it and running the
configuration script again -- option [6] in the launcher, "Re-run the configuration script again -- option [7] in the launcher, "Re-run the
configure script". configure script".
#### Reading Environment Variables #### Reading Environment Variables
@ -207,11 +207,8 @@ if INVOKEAI_ROOT is `/home/fred/invokeai` and the path is
| Setting | Default Value | Description | | Setting | Default Value | Description |
|----------|----------------|--------------| |----------|----------------|--------------|
| `autoimport_dir` | `autoimport/main` | At startup time, read and import any main model files found in this directory | | `autoimport_dir` | `autoimport/main` | At startup time, read and import any main model files found in this directory (not recommended)|
| `lora_dir` | `autoimport/lora` | At startup time, read and import any LoRA/LyCORIS models found in this directory | | `model_config_db` | `auto` | Location of the model configuration database. Specify `auto` to use the main invokeai.db database, or specify a `.yaml` or `.db` file to store the data externally.|
| `embedding_dir` | `autoimport/embedding` | At startup time, read and import any textual inversion (embedding) models found in this directory |
| `controlnet_dir` | `autoimport/controlnet` | At startup time, read and import any ControlNet models found in this directory |
| `conf_path` | `configs/models.yaml` | Location of the `models.yaml` model configuration file |
| `models_dir` | `models` | Location of the directory containing models installed by InvokeAI's model manager | | `models_dir` | `models` | Location of the directory containing models installed by InvokeAI's model manager |
| `legacy_conf_dir` | `configs/stable-diffusion` | Location of the directory containing the .yaml configuration files for legacy checkpoint models | | `legacy_conf_dir` | `configs/stable-diffusion` | Location of the directory containing the .yaml configuration files for legacy checkpoint models |
| `db_dir` | `databases` | Location of the directory containing InvokeAI's image, schema and session database | | `db_dir` | `databases` | Location of the directory containing InvokeAI's image, schema and session database |
@ -234,6 +231,18 @@ Paths:
# controlnet_dir: null # controlnet_dir: null
``` ```
### Model Cache
These options control the size of various caches that InvokeAI uses
during the model loading and conversion process. All units are in GB
| Setting | Default Value | Description |
|----------|----------------|--------------|
| `disk` | `20.0` | Before loading a model into memory, InvokeAI converts .ckpt and .safetensors models into diffusers format and saves them to disk. This option controls the maximum size of the directory in which these converted models are stored. If set to zero, then only the most recently-used model will be cached. |
| `ram` | `6.0` | After loading a model from disk, it is kept in system RAM until it is needed again. This option controls how much RAM is set aside for this purpose. Larger amounts allow more models to reside in RAM and for InvokeAI to quickly switch between them. |
| `vram` | `0.25` | This allows smaller models to remain in VRAM, speeding up execution modestly. It should be a small number. |
### Logging ### Logging
These settings control the information, warning, and debugging These settings control the information, warning, and debugging

View File

@ -17,6 +17,9 @@ image generation, providing you with a way to direct the network
towards generating images that better fit your desired style or towards generating images that better fit your desired style or
outcome. outcome.
#### How it works
ControlNet works by analyzing an input image, pre-processing that ControlNet works by analyzing an input image, pre-processing that
image to identify relevant information that can be interpreted by each image to identify relevant information that can be interpreted by each
specific ControlNet model, and then inserting that control information specific ControlNet model, and then inserting that control information
@ -24,21 +27,35 @@ into the generation process. This can be used to adjust the style,
composition, or other aspects of the image to better achieve a composition, or other aspects of the image to better achieve a
specific result. specific result.
#### Installation
#### Models
InvokeAI provides access to a series of ControlNet models that provide InvokeAI provides access to a series of ControlNet models that provide
different effects or styles in your generated images. different effects or styles in your generated images. Currently
InvokeAI only supports "diffuser" style ControlNet models. These are
folders that contain the files `config.json` and/or
`diffusion_pytorch_model.safetensors` and
`diffusion_pytorch_model.fp16.safetensors`. The name of the folder is
the name of the model.
To install ControlNet Models: ***InvokeAI does not currently support checkpoint-format
ControlNets. These come in the form of a single file with the
extension `.safetensors`.***
1. The easiest way to install them is Diffuser-style ControlNet models are available at HuggingFace
(http://huggingface.co) and accessed via their repo IDs (identifiers
in the format "author/modelname"). The easiest way to install them is
to use the InvokeAI model installer application. Use the to use the InvokeAI model installer application. Use the
`invoke.sh`/`invoke.bat` launcher to select item [4] and then navigate `invoke.sh`/`invoke.bat` launcher to select item [5] and then navigate
to the CONTROLNETS section. Select the models you wish to install and to the CONTROLNETS section. Select the models you wish to install and
press "APPLY CHANGES". You may also enter additional HuggingFace press "APPLY CHANGES". You may also enter additional HuggingFace
repo_ids in the "Additional models" textbox. repo_ids in the "Additional models" textbox:
2. Using the "Add Model" function of the model manager, enter the HuggingFace Repo ID of the ControlNet. The ID is in the format "author/repoName"
![Model Installer -
Controlnetl](../assets/installing-models/model-installer-controlnet.png){:width="640px"}
Command-line users can launch the model installer using the command
`invokeai-model-install`.
_Be aware that some ControlNet models require additional code _Be aware that some ControlNet models require additional code
functionality in order to work properly, so just installing a functionality in order to work properly, so just installing a
@ -46,17 +63,6 @@ third-party ControlNet model may not have the desired effect._ Please
read and follow the documentation for installing a third party model read and follow the documentation for installing a third party model
not currently included among InvokeAI's default list. not currently included among InvokeAI's default list.
Currently InvokeAI **only** supports 🤗 Diffusers-format ControlNet models. These are
folders that contain the files `config.json` and/or
`diffusion_pytorch_model.safetensors` and
`diffusion_pytorch_model.fp16.safetensors`. The name of the folder is
the name of the model.
🤗 Diffusers-format ControlNet models are available at HuggingFace
(http://huggingface.co) and accessed via their repo IDs (identifiers
in the format "author/modelname").
#### ControlNet Models
The models currently supported include: The models currently supported include:
**Canny**: **Canny**:
@ -127,29 +133,6 @@ Start/End - 0 represents the start of the generation, 1 represents the end. The
Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke. Additionally, each ControlNet section can be expanded in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in when you Invoke.
## T2I-Adapter
[T2I-Adapter](https://github.com/TencentARC/T2I-Adapter) is a tool similar to ControlNet that allows for control over the generation process by providing control information during the generation process. T2I-Adapter models tend to be smaller and more efficient than ControlNets.
##### Installation
To install T2I-Adapter Models:
1. The easiest way to install models is
to use the InvokeAI model installer application. Use the
`invoke.sh`/`invoke.bat` launcher to select item [5] and then navigate
to the T2I-Adapters section. Select the models you wish to install and
press "APPLY CHANGES". You may also enter additional HuggingFace
repo_ids in the "Additional models" textbox.
2. Using the "Add Model" function of the model manager, enter the HuggingFace Repo ID of the T2I-Adapter. The ID is in the format "author/repoName"
#### Usage
Each T2I Adapter has two settings that are applied.
Weight - Strength of the model applied to the generation for the section, defined by start/end.
Start/End - 0 represents the start of the generation, 1 represents the end. The Start/end setting controls what steps during the generation process have the ControlNet applied.
Additionally, each section can be expanded with the "Show Advanced" button in order to manipulate settings for the image pre-processor that adjusts your uploaded image before using it in during the generation process.
## IP-Adapter ## IP-Adapter
@ -157,13 +140,13 @@ Additionally, each section can be expanded with the "Show Advanced" button in o
![IP-Adapter + T2I](https://github.com/tencent-ailab/IP-Adapter/raw/main/assets/demo/ip_adpter_plus_multi.jpg) ![IP-Adapter + T2I](https://github.com/tencent-ailab/IP-Adapter/raw/main/assets/demo/ip_adpter_plus_multi.jpg)
![IP-Adapter + IMG2IMG](https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/demo/image-to-image.jpg) ![IP-Adapter + IMG2IMG](https://github.com/tencent-ailab/IP-Adapter/blob/main/assets/demo/image-to-image.jpg)
#### Installation #### Installation
There are several ways to install IP-Adapter models with an existing InvokeAI installation: There are several ways to install IP-Adapter models with an existing InvokeAI installation:
1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [4] to download models. 1. Through the command line interface launched from the invoke.sh / invoke.bat scripts, option [5] to download models.
2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](https://www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models. 2. Through the Model Manager UI with models from the *Tools* section of [www.models.invoke.ai](www.models.invoke.ai). To do this, copy the repo ID from the desired model page, and paste it in the Add Model field of the model manager. **Note** Both the IP-Adapter and the Image Encoder must be installed for IP-Adapter to work. For example, the [SD 1.5 IP-Adapter](https://models.invoke.ai/InvokeAI/ip_adapter_plus_sd15) and [SD1.5 Image Encoder](https://models.invoke.ai/InvokeAI/ip_adapter_sd_image_encoder) must be installed to use IP-Adapter with SD1.5 based models.
3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder. 3. **Advanced -- Not recommended ** Manually downloading the IP-Adapter and Image Encoder files - Image Encoder folders shouid be placed in the `models\any\clip_vision` folders. IP Adapter Model folders should be placed in the relevant `ip-adapter` folder of relevant base model folder of Invoke root directory. For example, for the SDXL IP-Adapter, files should be added to the `model/sdxl/ip_adapter/` folder.
#### Using IP-Adapter #### Using IP-Adapter

View File

@ -16,10 +16,9 @@ Model Merging can be be done by navigating to the Model Manager and clicking the
display all the diffusers-style models that InvokeAI knows about. display all the diffusers-style models that InvokeAI knows about.
If you do not see the model you are looking for, then it is probably If you do not see the model you are looking for, then it is probably
a legacy checkpoint model and needs to be converted using the a legacy checkpoint model and needs to be converted using the
"Convert" option in the Web-based Model Manager tab. `invoke` command-line client and its `!optimize` command. You
must select at least two models to merge. The third can be left at
You must select at least two models to merge. The third can be left "None" if you desire.
at "None" if you desire.
* Alpha: This is the ratio to use when combining models. It ranges * Alpha: This is the ratio to use when combining models. It ranges
from 0 to 1. The higher the value, the more weight is given to the from 0 to 1. The higher the value, the more weight is given to the

View File

@ -8,7 +8,7 @@ title: Command-line Utilities
InvokeAI comes with several scripts that are accessible via the InvokeAI comes with several scripts that are accessible via the
command line. To access these commands, start the "developer's command line. To access these commands, start the "developer's
console" from the launcher (`invoke.bat` menu item [7]). Users who are console" from the launcher (`invoke.bat` menu item [8]). Users who are
familiar with Python can alternatively activate InvokeAI's virtual familiar with Python can alternatively activate InvokeAI's virtual
environment (typically, but not necessarily `invokeai/.venv`). environment (typically, but not necessarily `invokeai/.venv`).
@ -34,7 +34,7 @@ invokeai-web --ram 7
## **invokeai-merge** ## **invokeai-merge**
This is the model merge script, the same as launcher option [3]. Call This is the model merge script, the same as launcher option [4]. Call
it with the `--gui` command-line argument to start the interactive it with the `--gui` command-line argument to start the interactive
console-based GUI. Alternatively, you can run it non-interactively console-based GUI. Alternatively, you can run it non-interactively
using command-line arguments as illustrated in the example below which using command-line arguments as illustrated in the example below which
@ -48,7 +48,7 @@ invokeai-merge --force --base-model sd-1 --models stable-diffusion-1.5 inkdiffus
## **invokeai-ti** ## **invokeai-ti**
This is the textual inversion training script that is run by launcher This is the textual inversion training script that is run by launcher
option [2]. Call it with `--gui` to run the interactive console-based option [3]. Call it with `--gui` to run the interactive console-based
front end. It can also be run non-interactively. It has about a front end. It can also be run non-interactively. It has about a
zillion arguments, but a typical training session can be launched zillion arguments, but a typical training session can be launched
with: with:
@ -68,7 +68,7 @@ in Windows).
## **invokeai-install** ## **invokeai-install**
This is the console-based model install script that is run by launcher This is the console-based model install script that is run by launcher
option [4]. If called without arguments, it will launch the option [5]. If called without arguments, it will launch the
interactive console-based interface. It can also be used interactive console-based interface. It can also be used
non-interactively to list, add and remove models as shown by these non-interactively to list, add and remove models as shown by these
examples: examples:
@ -148,7 +148,7 @@ launch the web server against it with `invokeai-web --root InvokeAI-New`.
## **invokeai-update** ## **invokeai-update**
This is the interactive console-based script that is run by launcher This is the interactive console-based script that is run by launcher
menu item [8] to update to a new version of InvokeAI. It takes no menu item [9] to update to a new version of InvokeAI. It takes no
command-line arguments. command-line arguments.
## **invokeai-metadata** ## **invokeai-metadata**

View File

@ -126,6 +126,6 @@ amounts of image-to-image variation even when the seed is fixed and the
`-v` argument is very low. Others are more deterministic. Feel free to `-v` argument is very low. Others are more deterministic. Feel free to
experiment until you find the combination that you like. experiment until you find the combination that you like.
Also be aware of the [Perlin Noise](../features/OTHER.md#thresholding-and-perlin-noise-initialization-options) Also be aware of the [Perlin Noise](OTHER.md#thresholding-and-perlin-noise-initialization-options)
feature, which provides another way of introducing variability into your feature, which provides another way of introducing variability into your
image generation requests. image generation requests.

View File

@ -28,7 +28,7 @@ Learn how to install and use ControlNet models for fine control over
image output. image output.
### * [Image-to-Image Guide](IMG2IMG.md) ### * [Image-to-Image Guide](IMG2IMG.md)
Use a seed image to build new creations. Use a seed image to build new creations in the CLI.
## Model Management ## Model Management

View File

@ -57,9 +57,7 @@ Prompts provide the models directions on what to generate. As a general rule of
Models are the magic that power InvokeAI. These files represent the output of training a machine on understanding massive amounts of images - providing them with the capability to generate new images using just a text description of what youd like to see. (Like Stable Diffusion!) Models are the magic that power InvokeAI. These files represent the output of training a machine on understanding massive amounts of images - providing them with the capability to generate new images using just a text description of what youd like to see. (Like Stable Diffusion!)
Invoke offers a simple way to download several different models upon installation, but many more can be discovered online, including at https://models.invoke.ai Invoke offers a simple way to download several different models upon installation, but many more can be discovered online, including at ****. Each model can produce a unique style of output, based on the images it was trained on - Try out different models to see which best fits your creative vision!
Each model can produce a unique style of output, based on the images it was trained on - Try out different models to see which best fits your creative vision!
- *Models that contain “inpainting” in the name are designed for use with the inpainting feature of the Unified Canvas* - *Models that contain “inpainting” in the name are designed for use with the inpainting feature of the Unified Canvas*

View File

@ -143,6 +143,7 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
<!-- seperator --> <!-- seperator -->
### Prompt Engineering ### Prompt Engineering
- [Prompt Syntax](features/PROMPTS.md) - [Prompt Syntax](features/PROMPTS.md)
- [Generating Variations](features/VARIATIONS.md)
### InvokeAI Configuration ### InvokeAI Configuration
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md) - [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
@ -165,8 +166,10 @@ still a work in progress, but coming soon.
### Command-Line Interface Retired ### Command-Line Interface Retired
All "invokeai" command-line interfaces have been retired as of version The original "invokeai" command-line interface has been retired. The
3.4. `invokeai` command will now launch a new command-line client that can
be used by developers to create and test nodes. It is not intended to
be used for routine image generation or manipulation.
To launch the Web GUI from the command-line, use the command To launch the Web GUI from the command-line, use the command
`invokeai-web` rather than the traditional `invokeai --web`. `invokeai-web` rather than the traditional `invokeai --web`.

View File

@ -40,7 +40,7 @@ experimental versions later.
this, open up a command-line window ("Terminal" on Linux and this, open up a command-line window ("Terminal" on Linux and
Macintosh, "Command" or "Powershell" on Windows) and type `python Macintosh, "Command" or "Powershell" on Windows) and type `python
--version`. If Python is installed, it will print out the version --version`. If Python is installed, it will print out the version
number. If it is version `3.10.*` or `3.11.*` you meet number. If it is version `3.9.*`, `3.10.*` or `3.11.*` you meet
requirements. requirements.
!!! warning "What to do if you have an unsupported version" !!! warning "What to do if you have an unsupported version"
@ -48,7 +48,7 @@ experimental versions later.
Go to [Python Downloads](https://www.python.org/downloads/) Go to [Python Downloads](https://www.python.org/downloads/)
and download the appropriate installer package for your and download the appropriate installer package for your
platform. We recommend [Version platform. We recommend [Version
3.10.12](https://www.python.org/downloads/release/python-3109/), 3.10.9](https://www.python.org/downloads/release/python-3109/),
which has been extensively tested with InvokeAI. which has been extensively tested with InvokeAI.
_Please select your platform in the section below for platform-specific _Please select your platform in the section below for platform-specific

View File

@ -32,7 +32,7 @@ gaming):
* **Python** * **Python**
version 3.10 through 3.11 version 3.9 through 3.11
* **CUDA Tools** * **CUDA Tools**
@ -65,7 +65,7 @@ gaming):
To install InvokeAI with virtual environments and the PIP package To install InvokeAI with virtual environments and the PIP package
manager, please follow these steps: manager, please follow these steps:
1. Please make sure you are using Python 3.10 through 3.11. The rest of the install 1. Please make sure you are using Python 3.9 through 3.11. The rest of the install
procedure depends on this and will not work with other versions: procedure depends on this and will not work with other versions:
```bash ```bash

View File

@ -4,31 +4,30 @@ title: Installing with Docker
# :fontawesome-brands-docker: Docker # :fontawesome-brands-docker: Docker
!!! warning "macOS and AMD GPU Users" !!! warning "For most users"
We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md), We highly recommend to Install InvokeAI locally using [these instructions](INSTALLATION.md)
because Docker containers can not access the GPU on macOS.
!!! warning "AMD GPU Users" !!! tip "For developers"
Container support for AMD GPUs has been reported to work by the community, but has not received For container-related development tasks or for enabling easy
extensive testing. Please make sure to set the `GPU_DRIVER=rocm` environment variable (see below), and deployment to other environments (on-premises or cloud), follow these
use the `build.sh` script to build the image for this to take effect at build time. instructions.
!!! tip "Linux and Windows Users" For general use, install locally to leverage your machine's GPU.
For optimal performance, configure your Docker daemon to access your machine's GPU.
Docker Desktop on Windows [includes GPU support](https://www.docker.com/blog/wsl-2-gpu-support-for-docker-desktop-on-nvidia-gpus/).
Linux users should install and configure the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html)
## Why containers? ## Why containers?
They provide a flexible, reliable way to build and deploy InvokeAI. They provide a flexible, reliable way to build and deploy InvokeAI. You'll also
See [Processes](https://12factor.net/processes) under the Twelve-Factor App use a Docker volume to store the largest model files and image outputs as a
methodology for details on why running applications in such a stateless fashion is important. first step in decoupling storage and compute. Future enhancements can do this
for other assets. See [Processes](https://12factor.net/processes) under the
Twelve-Factor App methodology for details on why running applications in such a
stateless fashion is important.
The container is configured for CUDA by default, but can be built to support AMD GPUs You can specify the target platform when building the image and running the
by setting the `GPU_DRIVER=rocm` environment variable at Docker image build time. container. You'll also need to specify the InvokeAI requirements file that
matches the container's OS and the architecture it will run on.
Developers on Apple silicon (M1/M2): You Developers on Apple silicon (M1/M2): You
[can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224) [can't access your GPU cores from Docker containers](https://github.com/pytorch/pytorch/issues/81224)
@ -37,16 +36,6 @@ development purposes it's fine. Once you're done with development tasks on your
laptop you can build for the target platform and architecture and deploy to laptop you can build for the target platform and architecture and deploy to
another environment with NVIDIA GPUs on-premises or in the cloud. another environment with NVIDIA GPUs on-premises or in the cloud.
## TL;DR
This assumes properly configured Docker on Linux or Windows/WSL2. Read on for detailed customization options.
```bash
# docker compose commands should be run from the `docker` directory
cd docker
docker compose up
```
## Installation in a Linux container (desktop) ## Installation in a Linux container (desktop)
### Prerequisites ### Prerequisites
@ -69,44 +58,222 @@ a token and copy it, since you will need in for the next step.
### Setup ### Setup
Set up your environmnent variables. In the `docker` directory, make a copy of `env.sample` and name it `.env`. Make changes as necessary. Set the fork you want to use and other variables.
Any environment variables supported by InvokeAI can be set here - please see the [CONFIGURATION](../features/CONFIGURATION.md) for further detail. !!! tip
At a minimum, you might want to set the `INVOKEAI_ROOT` environment variable I preffer to save my env vars
to point to the location where you wish to store your InvokeAI models, configuration, and outputs. in the repository root in a `.env` (or `.envrc`) file to automatically re-apply
them when I come back.
The build- and run- scripts contain default values for almost everything,
besides the [Hugging Face Token](https://huggingface.co/settings/tokens) you
created in the last step.
Some Suggestions of variables you may want to change besides the Token:
<figure markdown> <figure markdown>
| Environment-Variable <img width="220" align="right"/> | Default value <img width="360" align="right"/> | Description | | Environment-Variable <img width="220" align="right"/> | Default value <img width="360" align="right"/> | Description |
| ----------------------------------------------------- | ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ----------------------------------------------------- | ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `INVOKEAI_ROOT` | `~/invokeai` | **Required** - the location of your InvokeAI root directory. It will be created if it does not exist. | `HUGGING_FACE_HUB_TOKEN` | No default, but **required**! | This is the only **required** variable, without it you can't download the huggingface models |
| `HUGGING_FACE_HUB_TOKEN` | | InvokeAI will work without it, but some of the integrations with HuggingFace (like downloading from models from private repositories) may not work| | `REPOSITORY_NAME` | The Basename of the Repo folder | This name will used as the container repository/image name |
| `GPU_DRIVER` | `cuda` | Optionally change this to `rocm` to build the image for AMD GPUs. NOTE: Use the `build.sh` script to build the image for this to take effect. | `VOLUMENAME` | `${REPOSITORY_NAME,,}_data` | Name of the Docker Volume where model files will be stored |
| `ARCH` | arch of the build machine | Can be changed if you want to build the image for another arch |
| `CONTAINER_REGISTRY` | ghcr.io | Name of the Container Registry to use for the full tag |
| `CONTAINER_REPOSITORY` | `$(whoami)/${REPOSITORY_NAME}` | Name of the Container Repository |
| `CONTAINER_FLAVOR` | `cuda` | The flavor of the image to built, available options are `cuda`, `rocm` and `cpu`. If you choose `rocm` or `cpu`, the extra-index-url will be selected automatically, unless you set one yourself. |
| `CONTAINER_TAG` | `${INVOKEAI_BRANCH##*/}-${CONTAINER_FLAVOR}` | The Container Repository / Tag which will be used |
| `INVOKE_DOCKERFILE` | `Dockerfile` | The Dockerfile which should be built, handy for development |
| `PIP_EXTRA_INDEX_URL` | | If you want to use a custom pip-extra-index-url |
</figure> </figure>
#### Build the Image #### Build the Image
Use the standard `docker compose build` command from within the `docker` directory. I provided a build script, which is located next to the Dockerfile in
`docker/build.sh`. It can be executed from repository root like this:
If using an AMD GPU: ```bash
a: set the `GPU_DRIVER=rocm` environment variable in `docker-compose.yml` and continue using `docker compose build` as usual, or ./docker/build.sh
b: set `GPU_DRIVER=rocm` in the `.env` file and use the `build.sh` script, provided for convenience ```
The build Script not only builds the container, but also creates the docker
volume if not existing yet.
#### Run the Container #### Run the Container
Use the standard `docker compose up` command, and generally the `docker compose` [CLI](https://docs.docker.com/compose/reference/) as usual. After the build process is done, you can run the container via the provided
`docker/run.sh` script
Once the container starts up (and configures the InvokeAI root directory if this is a new installation), you can access InvokeAI at [http://localhost:9090](http://localhost:9090) ```bash
./docker/run.sh
```
## Troubleshooting / FAQ When used without arguments, the container will start the webserver and provide
you the link to open it. But if you want to use some other parameters you can
also do so.
- Q: I am running on Windows under WSL2, and am seeing a "no such file or directory" error. !!! example "run script example"
- A: Your `docker-entrypoint.sh` file likely has Windows (CRLF) as opposed to Unix (LF) line endings,
and you may have cloned this repository before the issue was fixed. To solve this, please change ```bash
the line endings in the `docker-entrypoint.sh` file to `LF`. You can do this in VSCode ./docker/run.sh "banana sushi" -Ak_lms -S42 -s10
(`Ctrl+P` and search for "line endings"), or by using the `dos2unix` utility in WSL. ```
Finally, you may delete `docker-entrypoint.sh` followed by `git pull; git checkout docker/docker-entrypoint.sh`
to reset the file to its most recent version. This would generate the legendary "banana sushi" with Seed 42, k_lms Sampler and 10 steps.
For more information on this issue, please see the [Docker Desktop documentation](https://docs.docker.com/desktop/troubleshoot/topics/#avoid-unexpected-syntax-errors-use-unix-style-line-endings-for-files-in-containers)
Find out more about available CLI-Parameters at [features/CLI.md](../../features/CLI/#arguments)
---
## Running the container on your GPU
If you have an Nvidia GPU, you can enable InvokeAI to run on the GPU by running
the container with an extra environment variable to enable GPU usage and have
the process run much faster:
```bash
GPU_FLAGS=all ./docker/run.sh
```
This passes the `--gpus all` to docker and uses the GPU.
If you don't have a GPU (or your host is not yet setup to use it) you will see a
message like this:
`docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].`
You can use the full set of GPU combinations documented here:
https://docs.docker.com/config/containers/resource_constraints/#gpu
For example, use `GPU_FLAGS=device=GPU-3a23c669-1f69-c64e-cf85-44e9b07e7a2a` to
choose a specific device identified by a UUID.
---
!!! warning "Deprecated"
From here on you will find the the previous Docker-Docs, which will still
provide some usefull informations.
## Usage (time to have fun)
### Startup
If you're on a **Linux container** the `invoke` script is **automatically
started** and the output dir set to the Docker volume you created earlier.
If you're **directly on macOS follow these startup instructions**. With the
Conda environment activated (`conda activate ldm`), run the interactive
interface that combines the functionality of the original scripts `txt2img` and
`img2img`: Use the more accurate but VRAM-intensive full precision math because
half-precision requires autocast and won't work. By default the images are saved
in `outputs/img-samples/`.
```Shell
python3 scripts/invoke.py --full_precision
```
You'll get the script's prompt. You can see available options or quit.
```Shell
invoke> -h
invoke> q
```
### Text to Image
For quick (but bad) image results test with 5 steps (default 50) and 1 sample
image. This will let you know that everything is set up correctly. Then increase
steps to 100 or more for good (but slower) results. The prompt can be in quotes
or not.
```Shell
invoke> The hulk fighting with sheldon cooper -s5 -n1
invoke> "woman closeup highly detailed" -s 150
# Reuse previous seed and apply face restoration
invoke> "woman closeup highly detailed" --steps 150 --seed -1 -G 0.75
```
You'll need to experiment to see if face restoration is making it better or
worse for your specific prompt.
If you're on a container the output is set to the Docker volume. You can copy it
wherever you want. You can download it from the Docker Desktop app, Volumes,
my-vol, data. Or you can copy it from your Mac terminal. Keep in mind
`docker cp` can't expand `*.png` so you'll need to specify the image file name.
On your host Mac (you can use the name of any container that mounted the
volume):
```Shell
docker cp dummy:/data/000001.928403745.png /Users/<your-user>/Pictures
```
### Image to Image
You can also do text-guided image-to-image translation. For example, turning a
sketch into a detailed drawing.
`strength` is a value between 0.0 and 1.0 that controls the amount of noise that
is added to the input image. Values that approach 1.0 allow for lots of
variations but will also produce images that are not semantically consistent
with the input. 0.0 preserves image exactly, 1.0 replaces it completely.
Make sure your input image size dimensions are multiples of 64 e.g. 512x512.
Otherwise you'll get `Error: product of dimension sizes > 2**31'`. If you still
get the error
[try a different size](https://support.apple.com/guide/preview/resize-rotate-or-flip-an-image-prvw2015/mac#:~:text=image's%20file%20size-,In%20the%20Preview%20app%20on%20your%20Mac%2C%20open%20the%20file,is%20shown%20at%20the%20bottom.)
like 512x256.
If you're on a Docker container, copy your input image into the Docker volume
```Shell
docker cp /Users/<your-user>/Pictures/sketch-mountains-input.jpg dummy:/data/
```
Try it out generating an image (or more). The `invoke` script needs absolute
paths to find the image so don't use `~`.
If you're on your Mac
```Shell
invoke> "A fantasy landscape, trending on artstation" -I /Users/<your-user>/Pictures/sketch-mountains-input.jpg --strength 0.75 --steps 100 -n4
```
If you're on a Linux container on your Mac
```Shell
invoke> "A fantasy landscape, trending on artstation" -I /data/sketch-mountains-input.jpg --strength 0.75 --steps 50 -n1
```
### Web Interface
You can use the `invoke` script with a graphical web interface. Start the web
server with:
```Shell
python3 scripts/invoke.py --full_precision --web
```
If it's running on your Mac point your Mac web browser to
<http://127.0.0.1:9090>
Press Control-C at the command line to stop the web server.
### Notes
Some text you can add at the end of the prompt to make it very pretty:
```Shell
cinematic photo, highly detailed, cinematic lighting, ultra-detailed, ultrarealistic, photorealism, Octane Rendering, cyberpunk lights, Hyper Detail, 8K, HD, Unreal Engine, V-Ray, full hd, cyberpunk, abstract, 3d octane render + 4k UHD + immense detail + dramatic lighting + well lit + black, purple, blue, pink, cerulean, teal, metallic colours, + fine details, ultra photoreal, photographic, concept art, cinematic composition, rule of thirds, mysterious, eerie, photorealism, breathtaking detailed, painting art deco pattern, by hsiao, ron cheng, john james audubon, bizarre compositions, exquisite detail, extremely moody lighting, painted by greg rutkowski makoto shinkai takashi takeuchi studio ghibli, akihiko yoshida
```
The original scripts should work as well.
```Shell
python3 scripts/orig_scripts/txt2img.py --help
python3 scripts/orig_scripts/txt2img.py --ddim_steps 100 --n_iter 1 --n_samples 1 --plms --prompt "new born baby kitten. Hyper Detail, Octane Rendering, Unreal Engine, V-Ray"
python3 scripts/orig_scripts/txt2img.py --ddim_steps 5 --n_iter 1 --n_samples 1 --plms --prompt "ocean" # or --klms
```

View File

@ -84,7 +84,7 @@ InvokeAI root directory's `autoimport` folder.
### Installation via `invokeai-model-install` ### Installation via `invokeai-model-install`
From the `invoke` launcher, choose option [4] "Download and install From the `invoke` launcher, choose option [5] "Download and install
models." This will launch the same script that prompted you to select models." This will launch the same script that prompted you to select
models at install time. You can use this to add models that you models at install time. You can use this to add models that you
skipped the first time around. It is all right to specify a model that skipped the first time around. It is all right to specify a model that
@ -123,11 +123,20 @@ installation. Examples:
# (list all controlnet models) # (list all controlnet models)
invokeai-model-install --list controlnet invokeai-model-install --list controlnet
# (install the model at the indicated URL) # (install the diffusers model using its hugging face repo_id)
invokeai-model-install --add stabilityai/stable-diffusion-xl-base-1.0
# (install a diffusers model that lives in a subfolder)
invokeai-model-install --add stabilityai/stable-diffusion-xl-base-1.0:vae
# (install the checkpoint model at the indicated URL)
invokeai-model-install --add https://civitai.com/api/download/models/128713 invokeai-model-install --add https://civitai.com/api/download/models/128713
# (delete the named model) # (delete the named model if its name is unique)
invokeai-model-install --delete sd-1/main/analog-diffusion invokeai-model-install --delete analog-diffusion
# (delete the named model using its fully qualified name)
invokeai-model-install --delete sd-1/main/test_model
``` ```
### Installation via the Web GUI ### Installation via the Web GUI
@ -141,6 +150,24 @@ left-hand panel) and navigate to *Import Models*
wish to install. You may use a URL, HuggingFace repo id, or a path on wish to install. You may use a URL, HuggingFace repo id, or a path on
your local disk. your local disk.
There is special scanning for CivitAI URLs which lets
you cut-and-paste either the URL for a CivitAI model page
(e.g. https://civitai.com/models/12345), or the direct download link
for a model (e.g. https://civitai.com/api/download/models/12345).
If the desired model is a HuggingFace diffusers model that is located
in a subfolder of the repository (e.g. vae), then append the subfolder
to the end of the repo_id like this:
```
# a VAE model located in subfolder "vae"
stabilityai/stable-diffusion-xl-base-1.0:vae
# version 2 of the model located in subfolder "v2"
monster-labs/control_v1p_sd15_qrcode_monster:v2
```
3. Alternatively, the *Scan for Models* button allows you to paste in 3. Alternatively, the *Scan for Models* button allows you to paste in
the path to a folder somewhere on your machine. It will be scanned for the path to a folder somewhere on your machine. It will be scanned for
importable models and prompt you to add the ones of your choice. importable models and prompt you to add the ones of your choice.

View File

@ -59,7 +59,8 @@ Prior to installing PyPatchMatch, you need to take the following steps:
`from patchmatch import patch_match`: It should look like the following: `from patchmatch import patch_match`: It should look like the following:
```py ```py
Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linux Python 3.9.5 (default, Nov 23 2021, 15:27:38)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information. Type "help", "copyright", "credits" or "license" for more information.
>>> from patchmatch import patch_match >>> from patchmatch import patch_match
Compiling and loading c extensions from "/home/lstein/Projects/InvokeAI/.invokeai-env/src/pypatchmatch/patchmatch". Compiling and loading c extensions from "/home/lstein/Projects/InvokeAI/.invokeai-env/src/pypatchmatch/patchmatch".

View File

@ -79,7 +79,7 @@ title: Manual Installation, Linux
and obtaining an access token for downloading. It will then download and and obtaining an access token for downloading. It will then download and
install the weights files for you. install the weights files for you.
Please look [here](../020_INSTALL_MANUAL.md) for a manual process for doing Please look [here](../INSTALL_MANUAL.md) for a manual process for doing
the same thing. the same thing.
7. Start generating images! 7. Start generating images!
@ -112,7 +112,7 @@ title: Manual Installation, Linux
To use an alternative model you may invoke the `!switch` command in To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`. model names are defined in `configs/models.yaml`.
8. Subsequently, to relaunch the script, be sure to run "conda activate 8. Subsequently, to relaunch the script, be sure to run "conda activate

View File

@ -150,7 +150,7 @@ will do our best to help.
To use an alternative model you may invoke the `!switch` command in To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`. model names are defined in `configs/models.yaml`.
--- ---

View File

@ -128,7 +128,7 @@ python scripts/invoke.py --web --max_load_models=3 \
``` ```
These options are described in detail in the These options are described in detail in the
[Command-Line Interface](../../deprecated/CLI.md) documentation. [Command-Line Interface](../../features/CLI.md) documentation.
## Troubleshooting ## Troubleshooting

View File

@ -75,7 +75,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
obtaining an access token for downloading. It will then download and install the obtaining an access token for downloading. It will then download and install the
weights files for you. weights files for you.
Please look [here](../020_INSTALL_MANUAL.md) for a manual process for doing the Please look [here](../INSTALL_MANUAL.md) for a manual process for doing the
same thing. same thing.
8. Start generating images! 8. Start generating images!
@ -108,7 +108,7 @@ Note that you will need NVIDIA drivers, Python 3.10, and Git installed beforehan
To use an alternative model you may invoke the `!switch` command in To use an alternative model you may invoke the `!switch` command in
the CLI, or pass `--model <model_name>` during `invoke.py` launch for the CLI, or pass `--model <model_name>` during `invoke.py` launch for
either the CLI or the Web UI. See [Command Line either the CLI or the Web UI. See [Command Line
Client](../../deprecated/CLI.md#model-selection-and-importation). The Client](../../features/CLI.md#model-selection-and-importation). The
model names are defined in `configs/models.yaml`. model names are defined in `configs/models.yaml`.
9. Subsequently, to relaunch the script, first activate the Anaconda 9. Subsequently, to relaunch the script, first activate the Anaconda

View File

@ -4,58 +4,32 @@ These are nodes that have been developed by the community, for the community. If
If you'd like to submit a node for the community, please refer to the [node creation overview](contributingNodes.md). If you'd like to submit a node for the community, please refer to the [node creation overview](contributingNodes.md).
To use a node, add the node to the `nodes` folder found in your InvokeAI install location. To download a node, simply download the `.py` node file from the link and add it to the `invokeai/app/invocations` folder in your Invoke AI install location. If you used the automated installation, this can be found inside the `.venv` folder. Along with the node, an example node graph should be provided to help you get started with the node.
The suggested method is to use `git clone` to clone the repository the node is found in. This allows for easy updates of the node in the future.
If you'd prefer, you can also just download the `.py` file from the linked repository and add it to the `nodes` folder.
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor. To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
- Community Nodes --------------------------------
+ [Average Images](#average-images)
+ [Depth Map from Wavefront OBJ](#depth-map-from-wavefront-obj)
+ [Film Grain](#film-grain)
+ [Generative Grammar-Based Prompt Nodes](#generative-grammar-based-prompt-nodes)
+ [GPT2RandomPromptMaker](#gpt2randompromptmaker)
+ [Grid to Gif](#grid-to-gif)
+ [Halftone](#halftone)
+ [Ideal Size](#ideal-size)
+ [Image and Mask Composition Pack](#image-and-mask-composition-pack)
+ [Image to Character Art Image Nodes](#image-to-character-art-image-nodes)
+ [Image Picker](#image-picker)
+ [Load Video Frame](#load-video-frame)
+ [Make 3D](#make-3d)
+ [Oobabooga](#oobabooga)
+ [Prompt Tools](#prompt-tools)
+ [Retroize](#retroize)
+ [Size Stepper Nodes](#size-stepper-nodes)
+ [Text font to Image](#text-font-to-image)
+ [Thresholding](#thresholding)
+ [XY Image to Grid and Images to Grids nodes](#xy-image-to-grid-and-images-to-grids-nodes)
- [Example Node Template](#example-node-template)
- [Disclaimer](#disclaimer)
- [Help](#help)
-------------------------------- --------------------------------
### Average Images ### Make 3D
**Description:** This node takes in a collection of images of the same size and averages them as output. It converts everything to RGB mode first. **Description:** Create compelling 3D stereo images from 2D originals.
**Node Link:** https://github.com/JPPhoto/average-images-node **Node Link:** [https://gitlab.com/srcrr/shift3d/-/raw/main/make3d.py](https://gitlab.com/srcrr/shift3d)
**Example Node Graph:** https://gitlab.com/srcrr/shift3d/-/raw/main/example-workflow.json?ref_type=heads&inline=false
**Output Examples**
![Painting of a cozy delapidated house](https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png){: style="height:512px;width:512px"}
![Photo of cute puppies](https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png){: style="height:512px;width:512px"}
-------------------------------- --------------------------------
### Depth Map from Wavefront OBJ ### Ideal Size
**Description:** Render depth maps from Wavefront .obj files (triangulated) using this simple 3D renderer utilizing numpy and matplotlib to compute and color the scene. There are simple parameters to change the FOV, camera position, and model orientation. **Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of.
To be imported, an .obj must use triangulated meshes, so make sure to enable that option if exporting from a 3D modeling program. This renderer makes each triangle a solid color based on its average depth, so it will cause anomalies if your .obj has large triangles. In Blender, the Remesh modifier can be helpful to subdivide a mesh into small pieces that work well given these limitations. **Node Link:** https://github.com/JPPhoto/ideal-size-node
**Node Link:** https://github.com/dwringer/depth-from-obj-node
**Example Usage:**
</br><img src="https://raw.githubusercontent.com/dwringer/depth-from-obj-node/main/depth_from_obj_usage.jpg" width="500" />
-------------------------------- --------------------------------
### Film Grain ### Film Grain
@ -65,46 +39,36 @@ To be imported, an .obj must use triangulated meshes, so make sure to enable tha
**Node Link:** https://github.com/JPPhoto/film-grain-node **Node Link:** https://github.com/JPPhoto/film-grain-node
-------------------------------- --------------------------------
### Generative Grammar-Based Prompt Nodes ### Image Picker
**Description:** This set of 3 nodes generates prompts from simple user-defined grammar rules (loaded from custom files - examples provided below). The prompts are made by recursively expanding a special template string, replacing nonterminal "parts-of-speech" until no nonterminal terms remain in the string. **Description:** This InvokeAI node takes in a collection of images and randomly chooses one. This can be useful when you have a number of poses to choose from for a ControlNet node, or a number of input images for another purpose.
This includes 3 Nodes: **Node Link:** https://github.com/JPPhoto/image-picker-node
- *Lookup Table from File* - loads a YAML file "prompt" section (or of a whole folder of YAML's) into a JSON-ified dictionary (Lookups output)
- *Lookups Entry from Prompt* - places a single entry in a new Lookups output under the specified heading
- *Prompt from Lookup Table* - uses a Collection of Lookups as grammar rules from which to randomly generate prompts.
**Node Link:** https://github.com/dwringer/generative-grammar-prompt-nodes
**Example Usage:**
</br><img src="https://raw.githubusercontent.com/dwringer/generative-grammar-prompt-nodes/main/lookuptables_usage.jpg" width="500" />
-------------------------------- --------------------------------
### GPT2RandomPromptMaker ### Thresholding
**Description:** A node for InvokeAI utilizes the GPT-2 language model to generate random prompts based on a provided seed and context. **Description:** This node generates masks for highlights, midtones, and shadows given an input image. You can optionally specify a blur for the lookup table used in making those masks from the source image.
**Node Link:** https://github.com/mickr777/GPT2RandomPromptMaker **Node Link:** https://github.com/JPPhoto/thresholding-node
**Output Examples** **Examples**
Generated Prompt: An enchanted weapon will be usable by any character regardless of their alignment. Input:
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/8496ba09-bcdd-4ff7-8076-ff213b6a1e4c" width="200" /> ![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/c88ada13-fb3d-484c-a4fe-947b44712632){: style="height:512px;width:512px"}
-------------------------------- Highlights/Midtones/Shadows:
### Grid to Gif
**Description:** One node that turns a grid image into an image collection, one node that turns an image collection into a gif. <img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/727021c1-36ff-4ec8-90c8-105e00de986d" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0b721bfc-f051-404e-b905-2f16b824ddfe" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/04c1297f-1c88-42b6-a7df-dd090b976286" style="width: 30%" />
**Node Link:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/GridToGif.py Highlights/Midtones/Shadows (with LUT blur enabled):
**Example Node Graph:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/Grid%20to%20Gif%20Example%20Workflow.json <img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/19aa718a-70c1-4668-8169-d68f4bd13771" style="width: 30%" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" style="width: 30%" />
**Output Examples** <img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" style="width: 30%" />
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/input.png" width="300" />
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/output.gif" width="300" />
-------------------------------- --------------------------------
### Halftone ### Halftone
@ -117,22 +81,108 @@ Generated Prompt: An enchanted weapon will be usable by any character regardless
Input: Input:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/fd5efb9f-4355-4409-a1c2-c1ca99e0cab4" width="300" /> ![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/fd5efb9f-4355-4409-a1c2-c1ca99e0cab4){: style="height:512px;width:512px"}
Halftone Output: Halftone Output:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/7e606f29-e68f-4d46-b3d5-97f799a4ec2f" width="300" /> ![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/7e606f29-e68f-4d46-b3d5-97f799a4ec2f){: style="height:512px;width:512px"}
CMYK Halftone Output: CMYK Halftone Output:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea" width="300" /> ![image](https://github.com/invoke-ai/InvokeAI/assets/34005131/c59c578f-db8e-4d66-8c66-2851752d75ea){: style="height:512px;width:512px"}
-------------------------------- --------------------------------
### Ideal Size ### Retroize
**Description:** This node calculates an ideal image size for a first pass of a multi-pass upscaling. The aim is to avoid duplication that results from choosing a size larger than the model is capable of. **Description:** Retroize is a collection of nodes for InvokeAI to "Retroize" images. Any image can be given a fresh coat of retro paint with these nodes, either from your gallery or from within the graph itself. It includes nodes to pixelize, quantize, palettize, and ditherize images; as well as to retrieve palettes from existing images.
**Node Link:** https://github.com/JPPhoto/ideal-size-node **Node Link:** https://github.com/Ar7ific1al/invokeai-retroizeinode/
**Retroize Output Examples**
![image](https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974)
--------------------------------
### GPT2RandomPromptMaker
**Description:** A node for InvokeAI utilizes the GPT-2 language model to generate random prompts based on a provided seed and context.
**Node Link:** https://github.com/mickr777/GPT2RandomPromptMaker
**Output Examples**
Generated Prompt: An enchanted weapon will be usable by any character regardless of their alignment.
![9acf5aef-7254-40dd-95b3-8eac431dfab0 (1)](https://github.com/mickr777/InvokeAI/assets/115216705/8496ba09-bcdd-4ff7-8076-ff213b6a1e4c)
--------------------------------
### Load Video Frame
**Description:** This is a video frame image provider + indexer/video creation nodes for hooking up to iterators and ranges and ControlNets and such for invokeAI node experimentation. Think animation + ControlNet outputs.
**Node Link:** https://github.com/helix4u/load_video_frame
**Example Node Graph:** https://github.com/helix4u/load_video_frame/blob/main/Example_Workflow.json
**Output Example:**
![Example animation](https://github.com/helix4u/load_video_frame/blob/main/testmp4_embed_converted.gif)
[Full mp4 of Example Output test.mp4](https://github.com/helix4u/load_video_frame/blob/main/test.mp4)
--------------------------------
### Oobabooga
**Description:** asks a local LLM running in Oobabooga's Text-Generation-Webui to write a prompt based on the user input.
**Link:** https://github.com/sammyf/oobabooga-node
**Example:**
"describe a new mystical creature in its natural environment"
*can return*
"The mystical creature I am describing to you is called the "Glimmerwing". It is a majestic, iridescent being that inhabits the depths of the most enchanted forests and glimmering lakes. Its body is covered in shimmering scales that reflect every color of the rainbow, and it has delicate, translucent wings that sparkle like diamonds in the sunlight. The Glimmerwing's home is a crystal-clear lake, surrounded by towering trees with leaves that shimmer like jewels. In this serene environment, the Glimmerwing spends its days swimming gracefully through the water, chasing schools of glittering fish and playing with the gentle ripples of the lake's surface.
As the sun sets, the Glimmerwing perches on a branch of one of the trees, spreading its wings to catch the last rays of light. The creature's scales glow softly, casting a rainbow of colors across the forest floor. The Glimmerwing sings a haunting melody, its voice echoing through the stillness of the night air. Its song is said to have the power to heal the sick and bring peace to troubled souls. Those who are lucky enough to hear the Glimmerwing's song are forever changed by its beauty and grace."
![glimmerwing_small](https://github.com/sammyf/oobabooga-node/assets/42468608/cecdd820-93dd-4c35-abbf-607e001fb2ed)
**Requirement**
a Text-Generation-Webui instance (might work remotely too, but I never tried it) and obviously InvokeAI 3.x
**Note**
This node works best with SDXL models, especially as the style can be described independantly of the LLM's output.
--------------------------------
### Depth Map from Wavefront OBJ
**Description:** Render depth maps from Wavefront .obj files (triangulated) using this simple 3D renderer utilizing numpy and matplotlib to compute and color the scene. There are simple parameters to change the FOV, camera position, and model orientation.
To be imported, an .obj must use triangulated meshes, so make sure to enable that option if exporting from a 3D modeling program. This renderer makes each triangle a solid color based on its average depth, so it will cause anomalies if your .obj has large triangles. In Blender, the Remesh modifier can be helpful to subdivide a mesh into small pieces that work well given these limitations.
**Node Link:** https://github.com/dwringer/depth-from-obj-node
**Example Usage:**
![depth from obj usage graph](https://raw.githubusercontent.com/dwringer/depth-from-obj-node/main/depth_from_obj_usage.jpg)
--------------------------------
### Generative Grammar-Based Prompt Nodes
**Description:** This set of 3 nodes generates prompts from simple user-defined grammar rules (loaded from custom files - examples provided below). The prompts are made by recursively expanding a special template string, replacing nonterminal "parts-of-speech" until no more nonterminal terms remain in the string.
This includes 3 Nodes:
- *Lookup Table from File* - loads a YAML file "prompt" section (or of a whole folder of YAML's) into a JSON-ified dictionary (Lookups output)
- *Lookups Entry from Prompt* - places a single entry in a new Lookups output under the specified heading
- *Prompt from Lookup Table* - uses a Collection of Lookups as grammar rules from which to randomly generate prompts.
**Node Link:** https://github.com/dwringer/generative-grammar-prompt-nodes
**Example Usage:**
![lookups usage example graph](https://raw.githubusercontent.com/dwringer/generative-grammar-prompt-nodes/main/lookuptables_usage.jpg)
-------------------------------- --------------------------------
### Image and Mask Composition Pack ### Image and Mask Composition Pack
@ -158,84 +208,45 @@ This includes 15 Nodes:
- *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke. - *Text Mask (simple 2D)* - create and position a white on black (or black on white) line of text using any font locally available to Invoke.
**Node Link:** https://github.com/dwringer/composition-nodes **Node Link:** https://github.com/dwringer/composition-nodes
</br><img src="https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg" width="500" /> **Nodes and Output Examples:**
![composition nodes usage graph](https://raw.githubusercontent.com/dwringer/composition-nodes/main/composition_pack_overview.jpg)
-------------------------------- --------------------------------
### Image to Character Art Image Nodes ### Size Stepper Nodes
**Description:** Group of nodes to convert an input image into ascii/unicode art Image **Description:** This is a set of nodes for calculating the necessary size increments for doing upscaling workflows. Use the *Final Size & Orientation* node to enter your full size dimensions and orientation (portrait/landscape/random), then plug that and your initial generation dimensions into the *Ideal Size Stepper* and get 1, 2, or 3 intermediate pairs of dimensions for upscaling. Note this does not output the initial size or full size dimensions: the 1, 2, or 3 outputs of this node are only the intermediate sizes.
**Node Link:** https://github.com/mickr777/imagetoasciiimage A third node is included, *Random Switch (Integers)*, which is just a generic version of Final Size with no orientation selection.
**Node Link:** https://github.com/dwringer/size-stepper-nodes
**Example Usage:**
![size stepper usage graph](https://raw.githubusercontent.com/dwringer/size-stepper-nodes/main/size_nodes_usage.jpg)
--------------------------------
### Text font to Image
**Description:** text font to text image node for InvokeAI, download a font to use (or if in font cache uses it from there), the text is always resized to the image size, but can control that with padding, optional 2nd line
**Node Link:** https://github.com/mickr777/textfontimage
**Output Examples** **Output Examples**
<img src="https://user-images.githubusercontent.com/115216705/271817646-8e061fcc-9a2c-4fa9-bcc7-c0f7b01e9056.png" width="300" /><img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/3c4990eb-2f42-46b9-90f9-0088b939dc6a" width="300" /></br> ![a3609d48-d9b7-41f0-b280-063d857986fb](https://github.com/mickr777/InvokeAI/assets/115216705/c21b0af3-d9c6-4c16-9152-846a23effd36)
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/fee7f800-a4a8-41e2-a66b-c66e4343307e" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/1d9c1003-a45f-45c2-aac7-46470bb89330" width="300" /> Results after using the depth controlnet
![9133eabb-bcda-4326-831e-1b641228b178](https://github.com/mickr777/InvokeAI/assets/115216705/915f1a53-968e-43eb-aa61-07cd8f1a733a)
![4f9a3fa8-9be9-4236-8a3e-fcec66decd2a](https://github.com/mickr777/InvokeAI/assets/115216705/821ef89e-8a60-44f5-b94e-471a9d8690cc)
![babd69c4-9d60-4a55-a834-5e8397f62610](https://github.com/mickr777/InvokeAI/assets/115216705/2befcb6d-49f4-4bfd-b5fc-1fee19274f89)
-------------------------------- --------------------------------
### Image Picker
**Description:** This InvokeAI node takes in a collection of images and randomly chooses one. This can be useful when you have a number of poses to choose from for a ControlNet node, or a number of input images for another purpose.
**Node Link:** https://github.com/JPPhoto/image-picker-node
--------------------------------
### Load Video Frame
**Description:** This is a video frame image provider + indexer/video creation nodes for hooking up to iterators and ranges and ControlNets and such for invokeAI node experimentation. Think animation + ControlNet outputs.
**Node Link:** https://github.com/helix4u/load_video_frame
**Output Example:**
<img src="https://raw.githubusercontent.com/helix4u/load_video_frame/main/_git_assets/testmp4_embed_converted.gif" width="500" />
--------------------------------
### Make 3D
**Description:** Create compelling 3D stereo images from 2D originals.
**Node Link:** [https://gitlab.com/srcrr/shift3d/-/raw/main/make3d.py](https://gitlab.com/srcrr/shift3d)
**Example Node Graph:** https://gitlab.com/srcrr/shift3d/-/raw/main/example-workflow.json?ref_type=heads&inline=false
**Output Examples**
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-1.png" width="300" />
<img src="https://gitlab.com/srcrr/shift3d/-/raw/main/example-2.png" width="300" />
--------------------------------
### Oobabooga
**Description:** asks a local LLM running in Oobabooga's Text-Generation-Webui to write a prompt based on the user input.
**Link:** https://github.com/sammyf/oobabooga-node
**Example:**
"describe a new mystical creature in its natural environment"
*can return*
"The mystical creature I am describing to you is called the "Glimmerwing". It is a majestic, iridescent being that inhabits the depths of the most enchanted forests and glimmering lakes. Its body is covered in shimmering scales that reflect every color of the rainbow, and it has delicate, translucent wings that sparkle like diamonds in the sunlight. The Glimmerwing's home is a crystal-clear lake, surrounded by towering trees with leaves that shimmer like jewels. In this serene environment, the Glimmerwing spends its days swimming gracefully through the water, chasing schools of glittering fish and playing with the gentle ripples of the lake's surface.
As the sun sets, the Glimmerwing perches on a branch of one of the trees, spreading its wings to catch the last rays of light. The creature's scales glow softly, casting a rainbow of colors across the forest floor. The Glimmerwing sings a haunting melody, its voice echoing through the stillness of the night air. Its song is said to have the power to heal the sick and bring peace to troubled souls. Those who are lucky enough to hear the Glimmerwing's song are forever changed by its beauty and grace."
<img src="https://github.com/sammyf/oobabooga-node/assets/42468608/cecdd820-93dd-4c35-abbf-607e001fb2ed" width="300" />
**Requirement**
a Text-Generation-Webui instance (might work remotely too, but I never tried it) and obviously InvokeAI 3.x
**Note**
This node works best with SDXL models, especially as the style can be described independently of the LLM's output.
--------------------------------
### Prompt Tools ### Prompt Tools
**Description:** A set of InvokeAI nodes that add general prompt manipulation tools. These were written to accompany the PromptsFromFile node and other prompt generation nodes. **Description:** A set of InvokeAI nodes that add general prompt manipulation tools. These where written to accompany the PromptsFromFile node and other prompt generation nodes.
1. PromptJoin - Joins to prompts into one. 1. PromptJoin - Joins to prompts into one.
2. PromptReplace - performs a search and replace on a prompt. With the option of using regex. 2. PromptReplace - performs a search and replace on a prompt. With the option of using regex.
@ -252,94 +263,62 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
**Node Link:** https://github.com/skunkworxdark/Prompt-tools-nodes **Node Link:** https://github.com/skunkworxdark/Prompt-tools-nodes
-------------------------------- --------------------------------
### Retroize
**Description:** Retroize is a collection of nodes for InvokeAI to "Retroize" images. Any image can be given a fresh coat of retro paint with these nodes, either from your gallery or from within the graph itself. It includes nodes to pixelize, quantize, palettize, and ditherize images; as well as to retrieve palettes from existing images.
**Node Link:** https://github.com/Ar7ific1al/invokeai-retroizeinode/
**Retroize Output Examples**
<img src="https://github.com/Ar7ific1al/InvokeAI_nodes_retroize/assets/2306586/de8b4fa6-324c-4c2d-b36c-297600c73974" width="500" />
--------------------------------
### Size Stepper Nodes
**Description:** This is a set of nodes for calculating the necessary size increments for doing upscaling workflows. Use the *Final Size & Orientation* node to enter your full size dimensions and orientation (portrait/landscape/random), then plug that and your initial generation dimensions into the *Ideal Size Stepper* and get 1, 2, or 3 intermediate pairs of dimensions for upscaling. Note this does not output the initial size or full size dimensions: the 1, 2, or 3 outputs of this node are only the intermediate sizes.
A third node is included, *Random Switch (Integers)*, which is just a generic version of Final Size with no orientation selection.
**Node Link:** https://github.com/dwringer/size-stepper-nodes
**Example Usage:**
</br><img src="https://raw.githubusercontent.com/dwringer/size-stepper-nodes/main/size_nodes_usage.jpg" width="500" />
--------------------------------
### Text font to Image
**Description:** text font to text image node for InvokeAI, download a font to use (or if in font cache uses it from there), the text is always resized to the image size, but can control that with padding, optional 2nd line
**Node Link:** https://github.com/mickr777/textfontimage
**Output Examples**
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/c21b0af3-d9c6-4c16-9152-846a23effd36" width="300" />
Results after using the depth controlnet
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/915f1a53-968e-43eb-aa61-07cd8f1a733a" width="300" />
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/821ef89e-8a60-44f5-b94e-471a9d8690cc" width="300" />
<img src="https://github.com/mickr777/InvokeAI/assets/115216705/2befcb6d-49f4-4bfd-b5fc-1fee19274f89" width="300" />
--------------------------------
### Thresholding
**Description:** This node generates masks for highlights, midtones, and shadows given an input image. You can optionally specify a blur for the lookup table used in making those masks from the source image.
**Node Link:** https://github.com/JPPhoto/thresholding-node
**Examples**
Input:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/c88ada13-fb3d-484c-a4fe-947b44712632" width="300" />
Highlights/Midtones/Shadows:
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/727021c1-36ff-4ec8-90c8-105e00de986d" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0b721bfc-f051-404e-b905-2f16b824ddfe" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/04c1297f-1c88-42b6-a7df-dd090b976286" width="300" />
Highlights/Midtones/Shadows (with LUT blur enabled):
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/19aa718a-70c1-4668-8169-d68f4bd13771" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0a440e43-697f-4d17-82ee-f287467df0a5" width="300" />
<img src="https://github.com/invoke-ai/InvokeAI/assets/34005131/0701fd0f-2ca7-4fe2-8613-2b52547bafce" width="300" />
--------------------------------
### XY Image to Grid and Images to Grids nodes ### XY Image to Grid and Images to Grids nodes
**Description:** Image to grid nodes and supporting tools. **Description:** Image to grid nodes and supporting tools.
1. "Images To Grids" node - Takes a collection of images and creates a grid(s) of images. If there are more images than the size of a single grid then multiple grids will be created until it runs out of images. 1. "Images To Grids" node - Takes a collection of images and creates a grid(s) of images. If there are more images than the size of a single grid then mutilple grids will be created until it runs out of images.
2. "XYImage To Grid" node - Converts a collection of XYImages into a labeled Grid of images. The XYImages collection has to be built using the supporting nodes. See example node setups for more details. 2. "XYImage To Grid" node - Converts a collection of XYImages into a labeled Grid of images. The XYImages collection has to be built using the supporoting nodes. See example node setups for more details.
See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/README.md See full docs here: https://github.com/skunkworxdark/XYGrid_nodes/edit/main/README.md
**Node Link:** https://github.com/skunkworxdark/XYGrid_nodes **Node Link:** https://github.com/skunkworxdark/XYGrid_nodes
-------------------------------- --------------------------------
### Image to Character Art Image Node's
**Description:** Group of nodes to convert an input image into ascii/unicode art Image
**Node Link:** https://github.com/mickr777/imagetoasciiimage
**Output Examples**
<img src="https://github.com/invoke-ai/InvokeAI/assets/115216705/8e061fcc-9a2c-4fa9-bcc7-c0f7b01e9056" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/3c4990eb-2f42-46b9-90f9-0088b939dc6a" width="300" /></br>
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/fee7f800-a4a8-41e2-a66b-c66e4343307e" width="300" />
<img src="https://github.com/mickr777/imagetoasciiimage/assets/115216705/1d9c1003-a45f-45c2-aac7-46470bb89330" width="300" />
--------------------------------
### Grid to Gif
**Description:** One node that turns a grid image into an image colletion, one node that turns an image collection into a gif
**Node Link:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/GridToGif.py
**Example Node Graph:** https://github.com/mildmisery/invokeai-GridToGifNode/blob/main/Grid%20to%20Gif%20Example%20Workflow.json
**Output Examples**
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/input.png" width="300" />
<img src="https://raw.githubusercontent.com/mildmisery/invokeai-GridToGifNode/main/output.gif" width="300" />
--------------------------------
### Example Node Template ### Example Node Template
**Description:** This node allows you to do super cool things with InvokeAI. **Description:** This node allows you to do super cool things with InvokeAI.
**Node Link:** https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/app/invocations/prompt.py **Node Link:** https://github.com/invoke-ai/InvokeAI/fake_node.py
**Example Workflow:** https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Prompt_from_File.json **Example Node Graph:** https://github.com/invoke-ai/InvokeAI/fake_node_graph.json
**Output Examples** **Output Examples**
</br><img src="https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png" width="500" /> ![Example Image](https://invoke-ai.github.io/InvokeAI/assets/invoke_ai_banner.png){: style="height:115px;width:240px"}
## Disclaimer ## Disclaimer

View File

@ -4,7 +4,7 @@ To learn about the specifics of creating a new node, please visit our [Node crea
Once youve created a node and confirmed that it behaves as expected locally, follow these steps: Once youve created a node and confirmed that it behaves as expected locally, follow these steps:
- Make sure the node is contained in a new Python (.py) file. Preferably, the node is in a repo with a README detailing the nodes usage & examples to help others more easily use your node. Including the tag "invokeai-node" in your repository's README can also help other users find it more easily. - Make sure the node is contained in a new Python (.py) file. Preferrably, the node is in a repo with a README detaling the nodes usage & examples to help others more easily use your node.
- Submit a pull request with a link to your node(s) repo in GitHub against the `main` branch to add the node to the [Community Nodes](communityNodes.md) list - Submit a pull request with a link to your node(s) repo in GitHub against the `main` branch to add the node to the [Community Nodes](communityNodes.md) list
- Make sure you are following the template below and have provided all relevant details about the node and what it does. Example output images and workflows are very helpful for other users looking to use your node. - Make sure you are following the template below and have provided all relevant details about the node and what it does. Example output images and workflows are very helpful for other users looking to use your node.
- A maintainer will review the pull request and node. If the node is aligned with the direction of the project, you may be asked for permission to include it in the core project. - A maintainer will review the pull request and node. If the node is aligned with the direction of the project, you may be asked for permission to include it in the core project.

View File

@ -2,17 +2,13 @@
We've curated some example workflows for you to get started with Workflows in InvokeAI We've curated some example workflows for you to get started with Workflows in InvokeAI
To use them, right click on your desired workflow, follow the link to GitHub and click the "⬇" button to download the raw file. You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images! To use them, right click on your desired workflow, press "Download Linked File". You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images!
If you're interested in finding more workflows, checkout the [#share-your-workflows](https://discord.com/channels/1020123559063990373/1130291608097661000) channel in the InvokeAI Discord. If you're interested in finding more workflows, checkout the [#share-your-workflows](https://discord.com/channels/1020123559063990373/1130291608097661000) channel in the InvokeAI Discord.
* [SD1.5 / SD2 Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Text_to_Image.json) * [SD1.5 / SD2 Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/Text_to_Image.json)
* [SDXL Text to Image](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/SDXL_Text_to_Image.json) * [SDXL Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_Text_to_Image.json)
* [SDXL Text to Image with Refiner](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/SDXL_w_Refiner_Text_to_Image.json) * [SDXL (with Refiner) Text to Image](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/SDXL_Text_to_Image.json)
* [Multi ControlNet (Canny & Depth)](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Multi_ControlNet_Canny_and_Depth.json) * [Tiled Upscaling with ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/ESRGAN_img2img_upscale w_Canny_ControlNet.json)
* [Tiled Upscaling with ControlNet](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/ESRGAN_img2img_upscale_w_Canny_ControlNet.json)
* [Prompt From File](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Prompt_from_File.json)
* [Face Detailer with IP-Adapter & ControlNet](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/Face_Detailer_with_IP-Adapter_and_Canny.json.json)
* [FaceMask](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceMask.json) * [FaceMask](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceMask.json)
* [FaceOff with 2x Face Scaling](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceOff_FaceScale2x.json) * [FaceOff with 2x Face Scaling](https://github.com/invoke-ai/InvokeAI/blob/main/docs/workflows/FaceOff_FaceScale2x.json)
* [QR Code Monster](https://github.com/invoke-ai/InvokeAI/blob/docs/main/docs/workflows/QR_Code_Monster.json)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,985 +0,0 @@
{
"name": "Multi ControlNet (Canny & Depth)",
"author": "Millu",
"description": "A sample workflow using canny & depth ControlNets to guide the generation process. ",
"version": "0.1.0",
"contact": "millun@invoke.ai",
"tags": "ControlNet, canny, depth",
"notes": "",
"exposedFields": [
{
"nodeId": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"fieldName": "model"
},
{
"nodeId": "7ce68934-3419-42d4-ac70-82cfc9397306",
"fieldName": "prompt"
},
{
"nodeId": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"fieldName": "prompt"
},
{
"nodeId": "c4b23e64-7986-40c4-9cad-46327b12e204",
"fieldName": "image"
},
{
"nodeId": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"fieldName": "image"
}
],
"meta": {
"version": "1.0.0"
},
"nodes": [
{
"id": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"type": "invocation",
"data": {
"id": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"type": "image",
"inputs": {
"image": {
"id": "189c8adf-68cc-4774-a729-49da89f6fdf1",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": "Depth Input Image"
}
},
"outputs": {
"image": {
"id": "1a31cacd-9d19-4f32-b558-c5e4aa39ce73",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "12f298fd-1d11-4cca-9426-01240f7ec7cf",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "c47dabcb-44e8-40c9-992d-81dca59f598e",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 225,
"position": {
"x": 3617.163483500202,
"y": 40.5529847930888
}
},
{
"id": "a33199c2-8340-401e-b8a2-42ffa875fc1c",
"type": "invocation",
"data": {
"id": "a33199c2-8340-401e-b8a2-42ffa875fc1c",
"type": "controlnet",
"inputs": {
"image": {
"id": "4e0a3172-d3c2-4005-a84c-fa12a404f8a0",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": ""
},
"control_model": {
"id": "8cb2d998-4086-430a-8b13-94cbc81e3ca3",
"name": "control_model",
"type": "ControlNetModelField",
"fieldKind": "input",
"label": "",
"value": {
"model_name": "sd-controlnet-depth",
"base_model": "sd-1"
}
},
"control_weight": {
"id": "5e32bd8a-9dc8-42d8-9bcc-c2b0460c0b0f",
"name": "control_weight",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"value": 1
},
"begin_step_percent": {
"id": "c258a276-352a-416c-8358-152f11005c0c",
"name": "begin_step_percent",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 0
},
"end_step_percent": {
"id": "43001125-0d70-4f87-8e79-da6603ad6c33",
"name": "end_step_percent",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 1
},
"control_mode": {
"id": "d2f14561-9443-4374-9270-e2f05007944e",
"name": "control_mode",
"type": "enum",
"fieldKind": "input",
"label": "",
"value": "balanced"
},
"resize_mode": {
"id": "727ee7d3-8bf6-4c7d-8b8a-43546b3b59cd",
"name": "resize_mode",
"type": "enum",
"fieldKind": "input",
"label": "",
"value": "just_resize"
}
},
"outputs": {
"control": {
"id": "b034aa0f-4d0d-46e4-b5e3-e25a9588d087",
"name": "control",
"type": "ControlField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 508,
"position": {
"x": 4477.604342844504,
"y": -49.39005411272677
}
},
{
"id": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"type": "invocation",
"data": {
"id": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"type": "compel",
"inputs": {
"prompt": {
"id": "7c2c4771-2161-4d77-aced-ff8c4b3f1c15",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Negative Prompt",
"value": ""
},
"clip": {
"id": "06d59e91-9cca-411d-bf05-86b099b3e8f7",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "858bc33c-134c-4bf6-8855-f943e1d26f14",
"name": "conditioning",
"type": "ConditioningField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 261,
"position": {
"x": 4444.706437017514,
"y": -924.0715320874991
}
},
{
"id": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"type": "invocation",
"data": {
"id": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"type": "main_model_loader",
"inputs": {
"model": {
"id": "f4a915a5-593e-4b6d-9198-c78eb5cefaed",
"name": "model",
"type": "MainModelField",
"fieldKind": "input",
"label": "",
"value": {
"model_name": "stable-diffusion-v1-5",
"base_model": "sd-1",
"model_type": "main"
}
}
},
"outputs": {
"unet": {
"id": "ee24fb16-da38-4c66-9fbc-e8f296ed40d2",
"name": "unet",
"type": "UNetField",
"fieldKind": "output"
},
"clip": {
"id": "f3fb0524-8803-41c1-86db-a61a13ee6a33",
"name": "clip",
"type": "ClipField",
"fieldKind": "output"
},
"vae": {
"id": "5c4878a8-b40f-44ab-b146-1c1f42c860b3",
"name": "vae",
"type": "VaeField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 226,
"position": {
"x": 3837.096149678291,
"y": -1050.015351148365
}
},
{
"id": "7ce68934-3419-42d4-ac70-82cfc9397306",
"type": "invocation",
"data": {
"id": "7ce68934-3419-42d4-ac70-82cfc9397306",
"type": "compel",
"inputs": {
"prompt": {
"id": "7c2c4771-2161-4d77-aced-ff8c4b3f1c15",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Positive Prompt",
"value": ""
},
"clip": {
"id": "06d59e91-9cca-411d-bf05-86b099b3e8f7",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "858bc33c-134c-4bf6-8855-f943e1d26f14",
"name": "conditioning",
"type": "ConditioningField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 261,
"position": {
"x": 4449.356038911986,
"y": -1201.659695420063
}
},
{
"id": "d204d184-f209-4fae-a0a1-d152800844e1",
"type": "invocation",
"data": {
"id": "d204d184-f209-4fae-a0a1-d152800844e1",
"type": "controlnet",
"inputs": {
"image": {
"id": "4e0a3172-d3c2-4005-a84c-fa12a404f8a0",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": ""
},
"control_model": {
"id": "8cb2d998-4086-430a-8b13-94cbc81e3ca3",
"name": "control_model",
"type": "ControlNetModelField",
"fieldKind": "input",
"label": "",
"value": {
"model_name": "sd-controlnet-canny",
"base_model": "sd-1"
}
},
"control_weight": {
"id": "5e32bd8a-9dc8-42d8-9bcc-c2b0460c0b0f",
"name": "control_weight",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"value": 1
},
"begin_step_percent": {
"id": "c258a276-352a-416c-8358-152f11005c0c",
"name": "begin_step_percent",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 0
},
"end_step_percent": {
"id": "43001125-0d70-4f87-8e79-da6603ad6c33",
"name": "end_step_percent",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 1
},
"control_mode": {
"id": "d2f14561-9443-4374-9270-e2f05007944e",
"name": "control_mode",
"type": "enum",
"fieldKind": "input",
"label": "",
"value": "balanced"
},
"resize_mode": {
"id": "727ee7d3-8bf6-4c7d-8b8a-43546b3b59cd",
"name": "resize_mode",
"type": "enum",
"fieldKind": "input",
"label": "",
"value": "just_resize"
}
},
"outputs": {
"control": {
"id": "b034aa0f-4d0d-46e4-b5e3-e25a9588d087",
"name": "control",
"type": "ControlField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 508,
"position": {
"x": 4479.68542130465,
"y": -618.4221638099414
}
},
{
"id": "c4b23e64-7986-40c4-9cad-46327b12e204",
"type": "invocation",
"data": {
"id": "c4b23e64-7986-40c4-9cad-46327b12e204",
"type": "image",
"inputs": {
"image": {
"id": "189c8adf-68cc-4774-a729-49da89f6fdf1",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": "Canny Input Image"
}
},
"outputs": {
"image": {
"id": "1a31cacd-9d19-4f32-b558-c5e4aa39ce73",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "12f298fd-1d11-4cca-9426-01240f7ec7cf",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "c47dabcb-44e8-40c9-992d-81dca59f598e",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 225,
"position": {
"x": 3593.7474460420153,
"y": -538.1200472386865
}
},
{
"id": "ca4d5059-8bfb-447f-b415-da0faba5a143",
"type": "invocation",
"data": {
"id": "ca4d5059-8bfb-447f-b415-da0faba5a143",
"type": "collect",
"inputs": {
"item": {
"id": "b16ae602-8708-4b1b-8d4f-9e0808d429ab",
"name": "item",
"type": "CollectionItem",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"collection": {
"id": "d8987dd8-dec8-4d94-816a-3e356af29884",
"name": "collection",
"type": "Collection",
"fieldKind": "output"
}
},
"label": "ControlNet Collection",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 104,
"position": {
"x": 4866.191497139488,
"y": -299.0538619537037
}
},
{
"id": "018b1214-c2af-43a7-9910-fb687c6726d7",
"type": "invocation",
"data": {
"id": "018b1214-c2af-43a7-9910-fb687c6726d7",
"type": "midas_depth_image_processor",
"inputs": {
"metadata": {
"id": "77f91980-c696-4a18-a9ea-6e2fc329a747",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": ""
},
"image": {
"id": "50710a20-2af5-424d-9d17-aa08167829c6",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": ""
},
"a_mult": {
"id": "f3b26f9d-2498-415e-9c01-197a8d06c0a5",
"name": "a_mult",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 2
},
"bg_th": {
"id": "4b1eb3ae-9d4a-47d6-b0ed-da62501e007f",
"name": "bg_th",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 0.1
}
},
"outputs": {
"image": {
"id": "b4ed637c-c4a0-4fdd-a24e-36d6412e4ccf",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "6bf9b609-d72c-4239-99bd-390a73cc3a9c",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "3e8aef09-cf44-4e3e-a490-d3c9e7b23119",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 339,
"position": {
"x": 4054.229311491893,
"y": -31.611411056365725
}
},
{
"id": "c826ba5e-9676-4475-b260-07b85e88753c",
"type": "invocation",
"data": {
"id": "c826ba5e-9676-4475-b260-07b85e88753c",
"type": "canny_image_processor",
"inputs": {
"metadata": {
"id": "08331ea6-99df-4e61-a919-204d9bfa8fb2",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": ""
},
"image": {
"id": "33a37284-06ac-459c-ba93-1655e4f69b2d",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": ""
},
"low_threshold": {
"id": "21ec18a3-50c5-4ba1-9642-f921744d594f",
"name": "low_threshold",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 100
},
"high_threshold": {
"id": "ebeab271-a5ff-4c88-acfd-1d0271ab6ed4",
"name": "high_threshold",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 200
}
},
"outputs": {
"image": {
"id": "c0caadbf-883f-4cb4-a62d-626b9c81fc4e",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "df225843-8098-49c0-99d1-3b0b6600559f",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "e4abe0de-aa16-41f3-9cd7-968b49db5da3",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 339,
"position": {
"x": 4095.757337055795,
"y": -455.63440891935863
}
},
{
"id": "9db25398-c869-4a63-8815-c6559341ef12",
"type": "invocation",
"data": {
"id": "9db25398-c869-4a63-8815-c6559341ef12",
"type": "l2i",
"inputs": {
"metadata": {
"id": "2f269793-72e5-4ff3-b76c-fab4f93e983f",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "4aaedd3b-cc77-420c-806e-c7fa74ec4cdf",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"vae": {
"id": "432b066a-2462-4d18-83d9-64620b72df45",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": ""
},
"tiled": {
"id": "61f86e0f-7c46-40f8-b3f5-fe2f693595ca",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"fp32": {
"id": "39b6c89a-37ef-4a7e-9509-daeca49d5092",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
}
},
"outputs": {
"image": {
"id": "6204e9b0-61dd-4250-b685-2092ba0e28e6",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "b4140649-8d5d-4d2d-bfa6-09e389ede5f9",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "f3a0c0c8-fc24-4646-8be1-ed8cdd140828",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": false,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 267,
"position": {
"x": 5678.726701377887,
"y": -351.6792416734579
}
},
{
"id": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"type": "invocation",
"data": {
"id": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"type": "denoise_latents",
"inputs": {
"positive_conditioning": {
"id": "869cd309-c238-444b-a1a0-5021f99785ba",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"negative_conditioning": {
"id": "343447b4-1e37-4e9e-8ac7-4d04864066af",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"noise": {
"id": "b556571e-0cf9-4e03-8cfc-5caad937d957",
"name": "noise",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"steps": {
"id": "a3b3d2de-9308-423e-b00d-c209c3e6e808",
"name": "steps",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 10
},
"cfg_scale": {
"id": "b13c50a4-ec7e-4579-b0ef-2fe5df2605ea",
"name": "cfg_scale",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"value": 7.5
},
"denoising_start": {
"id": "57d5d755-f58f-4347-b991-f0bca4a0ab29",
"name": "denoising_start",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 0
},
"denoising_end": {
"id": "323e78a6-880a-4d73-a62c-70faff965aa6",
"name": "denoising_end",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 1
},
"scheduler": {
"id": "c25fdc17-a089-43ac-953e-067c45d5c76b",
"name": "scheduler",
"type": "Scheduler",
"fieldKind": "input",
"label": "",
"value": "euler"
},
"unet": {
"id": "6cde662b-e633-4569-b6b4-ec87c52c9c11",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": ""
},
"control": {
"id": "276a4df9-bb26-4505-a4d3-a94e18c7b541",
"name": "control",
"type": "ControlPolymorphic",
"fieldKind": "input",
"label": ""
},
"ip_adapter": {
"id": "48d40c51-b5e2-4457-a428-eef0696695e8",
"name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"t2i_adapter": {
"id": "75dd8af2-e7d7-48b4-a574-edd9f6e686ad",
"name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "9223d67b-1dd7-4b34-a45f-ed0a725d9702",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"denoise_mask": {
"id": "4ee99177-6923-4b7f-8fe0-d721dd7cb05b",
"name": "denoise_mask",
"type": "DenoiseMaskField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"latents": {
"id": "7fb4e326-a974-43e8-9ee7-2e3ab235819d",
"name": "latents",
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "6bb8acd0-8973-4195-a095-e376385dc705",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "795dea52-1c7d-4e64-99f7-2f60ec6e3ab9",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.4.0"
},
"width": 320,
"height": 646,
"position": {
"x": 5274.672987098195,
"y": -823.0752416664332
}
}
],
"edges": [
{
"source": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"sourceHandle": "clip",
"target": "7ce68934-3419-42d4-ac70-82cfc9397306",
"targetHandle": "clip",
"id": "reactflow__edge-54486974-835b-4d81-8f82-05f9f32ce9e9clip-7ce68934-3419-42d4-ac70-82cfc9397306clip",
"type": "default"
},
{
"source": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"sourceHandle": "clip",
"target": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"targetHandle": "clip",
"id": "reactflow__edge-54486974-835b-4d81-8f82-05f9f32ce9e9clip-273e3f96-49ea-4dc5-9d5b-9660390f14e1clip",
"type": "default"
},
{
"source": "a33199c2-8340-401e-b8a2-42ffa875fc1c",
"sourceHandle": "control",
"target": "ca4d5059-8bfb-447f-b415-da0faba5a143",
"targetHandle": "item",
"id": "reactflow__edge-a33199c2-8340-401e-b8a2-42ffa875fc1ccontrol-ca4d5059-8bfb-447f-b415-da0faba5a143item",
"type": "default"
},
{
"source": "d204d184-f209-4fae-a0a1-d152800844e1",
"sourceHandle": "control",
"target": "ca4d5059-8bfb-447f-b415-da0faba5a143",
"targetHandle": "item",
"id": "reactflow__edge-d204d184-f209-4fae-a0a1-d152800844e1control-ca4d5059-8bfb-447f-b415-da0faba5a143item",
"type": "default"
},
{
"source": "8e860e51-5045-456e-bf04-9a62a2a5c49e",
"sourceHandle": "image",
"target": "018b1214-c2af-43a7-9910-fb687c6726d7",
"targetHandle": "image",
"id": "reactflow__edge-8e860e51-5045-456e-bf04-9a62a2a5c49eimage-018b1214-c2af-43a7-9910-fb687c6726d7image",
"type": "default"
},
{
"source": "018b1214-c2af-43a7-9910-fb687c6726d7",
"sourceHandle": "image",
"target": "a33199c2-8340-401e-b8a2-42ffa875fc1c",
"targetHandle": "image",
"id": "reactflow__edge-018b1214-c2af-43a7-9910-fb687c6726d7image-a33199c2-8340-401e-b8a2-42ffa875fc1cimage",
"type": "default"
},
{
"source": "c4b23e64-7986-40c4-9cad-46327b12e204",
"sourceHandle": "image",
"target": "c826ba5e-9676-4475-b260-07b85e88753c",
"targetHandle": "image",
"id": "reactflow__edge-c4b23e64-7986-40c4-9cad-46327b12e204image-c826ba5e-9676-4475-b260-07b85e88753cimage",
"type": "default"
},
{
"source": "c826ba5e-9676-4475-b260-07b85e88753c",
"sourceHandle": "image",
"target": "d204d184-f209-4fae-a0a1-d152800844e1",
"targetHandle": "image",
"id": "reactflow__edge-c826ba5e-9676-4475-b260-07b85e88753cimage-d204d184-f209-4fae-a0a1-d152800844e1image",
"type": "default"
},
{
"source": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"sourceHandle": "vae",
"target": "9db25398-c869-4a63-8815-c6559341ef12",
"targetHandle": "vae",
"id": "reactflow__edge-54486974-835b-4d81-8f82-05f9f32ce9e9vae-9db25398-c869-4a63-8815-c6559341ef12vae",
"type": "default"
},
{
"source": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"sourceHandle": "latents",
"target": "9db25398-c869-4a63-8815-c6559341ef12",
"targetHandle": "latents",
"id": "reactflow__edge-ac481b7f-08bf-4a9d-9e0c-3a82ea5243celatents-9db25398-c869-4a63-8815-c6559341ef12latents",
"type": "default"
},
{
"source": "ca4d5059-8bfb-447f-b415-da0faba5a143",
"sourceHandle": "collection",
"target": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"targetHandle": "control",
"id": "reactflow__edge-ca4d5059-8bfb-447f-b415-da0faba5a143collection-ac481b7f-08bf-4a9d-9e0c-3a82ea5243cecontrol",
"type": "default"
},
{
"source": "54486974-835b-4d81-8f82-05f9f32ce9e9",
"sourceHandle": "unet",
"target": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"targetHandle": "unet",
"id": "reactflow__edge-54486974-835b-4d81-8f82-05f9f32ce9e9unet-ac481b7f-08bf-4a9d-9e0c-3a82ea5243ceunet",
"type": "default"
},
{
"source": "273e3f96-49ea-4dc5-9d5b-9660390f14e1",
"sourceHandle": "conditioning",
"target": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"targetHandle": "negative_conditioning",
"id": "reactflow__edge-273e3f96-49ea-4dc5-9d5b-9660390f14e1conditioning-ac481b7f-08bf-4a9d-9e0c-3a82ea5243cenegative_conditioning",
"type": "default"
},
{
"source": "7ce68934-3419-42d4-ac70-82cfc9397306",
"sourceHandle": "conditioning",
"target": "ac481b7f-08bf-4a9d-9e0c-3a82ea5243ce",
"targetHandle": "positive_conditioning",
"id": "reactflow__edge-7ce68934-3419-42d4-ac70-82cfc9397306conditioning-ac481b7f-08bf-4a9d-9e0c-3a82ea5243cepositive_conditioning",
"type": "default"
}
]
}

View File

@ -1,719 +0,0 @@
{
"name": "Prompt from File",
"author": "InvokeAI",
"description": "Sample workflow using prompt from file capabilities of InvokeAI ",
"version": "0.1.0",
"contact": "millun@invoke.ai",
"tags": "text2image, prompt from file, default",
"notes": "",
"exposedFields": [
{
"nodeId": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"fieldName": "model"
},
{
"nodeId": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"fieldName": "file_path"
}
],
"meta": {
"version": "1.0.0"
},
"nodes": [
{
"id": "c2eaf1ba-5708-4679-9e15-945b8b432692",
"type": "invocation",
"data": {
"id": "c2eaf1ba-5708-4679-9e15-945b8b432692",
"type": "compel",
"inputs": {
"prompt": {
"id": "dcdf3f6d-9b96-4bcd-9b8d-f992fefe4f62",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "",
"value": ""
},
"clip": {
"id": "3f1981c9-d8a9-42eb-a739-4f120eb80745",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "46205e6c-c5e2-44cb-9c82-1cd20b95674a",
"name": "conditioning",
"type": "ConditioningField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 261,
"position": {
"x": 1177.3417789657444,
"y": -102.0924766641035
}
},
{
"id": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"type": "invocation",
"data": {
"id": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"type": "prompt_from_file",
"inputs": {
"file_path": {
"id": "37e37684-4f30-4ec8-beae-b333e550f904",
"name": "file_path",
"type": "string",
"fieldKind": "input",
"label": "Prompts File Path",
"value": ""
},
"pre_prompt": {
"id": "7de02feb-819a-4992-bad3-72a30920ddea",
"name": "pre_prompt",
"type": "string",
"fieldKind": "input",
"label": "",
"value": ""
},
"post_prompt": {
"id": "95f191d8-a282-428e-bd65-de8cb9b7513a",
"name": "post_prompt",
"type": "string",
"fieldKind": "input",
"label": "",
"value": ""
},
"start_line": {
"id": "efee9a48-05ab-4829-8429-becfa64a0782",
"name": "start_line",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 1
},
"max_prompts": {
"id": "abebb428-3d3d-49fd-a482-4e96a16fff08",
"name": "max_prompts",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 1
}
},
"outputs": {
"collection": {
"id": "77d5d7f1-9877-4ab1-9a8c-33e9ffa9abf3",
"name": "collection",
"type": "StringCollection",
"fieldKind": "output"
}
},
"label": "Prompts from File",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 589,
"position": {
"x": 394.181884547075,
"y": -423.5345157864633
}
},
{
"id": "1b89067c-3f6b-42c8-991f-e3055789b251",
"type": "invocation",
"data": {
"id": "1b89067c-3f6b-42c8-991f-e3055789b251",
"type": "iterate",
"inputs": {
"collection": {
"id": "4c564bf8-5ed6-441e-ad2c-dda265d5785f",
"name": "collection",
"type": "Collection",
"fieldKind": "input",
"label": "",
"value": []
}
},
"outputs": {
"item": {
"id": "36340f9a-e7a5-4afa-b4b5-313f4e292380",
"name": "item",
"type": "CollectionItem",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 104,
"position": {
"x": 792.8735298060233,
"y": -432.6964953027252
}
},
{
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"type": "invocation",
"data": {
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"type": "main_model_loader",
"inputs": {
"model": {
"id": "3f264259-3418-47d5-b90d-b6600e36ae46",
"name": "model",
"type": "MainModelField",
"fieldKind": "input",
"label": "",
"value": {
"model_name": "stable-diffusion-v1-5",
"base_model": "sd-1",
"model_type": "main"
}
}
},
"outputs": {
"unet": {
"id": "8e182ea2-9d0a-4c02-9407-27819288d4b5",
"name": "unet",
"type": "UNetField",
"fieldKind": "output"
},
"clip": {
"id": "d67d9d30-058c-46d5-bded-3d09d6d1aa39",
"name": "clip",
"type": "ClipField",
"fieldKind": "output"
},
"vae": {
"id": "89641601-0429-4448-98d5-190822d920d8",
"name": "vae",
"type": "VaeField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 226,
"position": {
"x": -47.66201354137797,
"y": -299.218193067033
}
},
{
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"type": "invocation",
"data": {
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"type": "compel",
"inputs": {
"prompt": {
"id": "dcdf3f6d-9b96-4bcd-9b8d-f992fefe4f62",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "",
"value": ""
},
"clip": {
"id": "3f1981c9-d8a9-42eb-a739-4f120eb80745",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "46205e6c-c5e2-44cb-9c82-1cd20b95674a",
"name": "conditioning",
"type": "ConditioningField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 261,
"position": {
"x": 1175.0187896425462,
"y": -420.64289413577114
}
},
{
"id": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"type": "invocation",
"data": {
"id": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"type": "noise",
"inputs": {
"seed": {
"id": "b722d84a-eeee-484f-bef2-0250c027cb67",
"name": "seed",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 0
},
"width": {
"id": "d5f8ce11-0502-4bfc-9a30-5757dddf1f94",
"name": "width",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 512
},
"height": {
"id": "f187d5ff-38a5-4c3f-b780-fc5801ef34af",
"name": "height",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 512
},
"use_cpu": {
"id": "12f112b8-8b76-4816-b79e-662edc9f9aa5",
"name": "use_cpu",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": true
}
},
"outputs": {
"noise": {
"id": "08576ad1-96d9-42d2-96ef-6f5c1961933f",
"name": "noise",
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "f3e1f94a-258d-41ff-9789-bd999bd9f40d",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "6cefc357-4339-415e-a951-49b9c2be32f4",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 389,
"position": {
"x": 809.1964864135837,
"y": 183.2735123359796
}
},
{
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
"type": "invocation",
"data": {
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
"type": "rand_int",
"inputs": {
"low": {
"id": "b9fc6cf1-469c-4037-9bf0-04836965826f",
"name": "low",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 0
},
"high": {
"id": "06eac725-0f60-4ba2-b8cd-7ad9f757488c",
"name": "high",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 2147483647
}
},
"outputs": {
"value": {
"id": "df08c84e-7346-4e92-9042-9e5cb773aaff",
"name": "value",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": false,
"version": "1.0.0"
},
"width": 320,
"height": 218,
"position": {
"x": 354.19913145404166,
"y": 301.86324846905165
}
},
{
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"type": "invocation",
"data": {
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"type": "l2i",
"inputs": {
"metadata": {
"id": "022e4b33-562b-438d-b7df-41c3fd931f40",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "67cb6c77-a394-4a66-a6a9-a0a7dcca69ec",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"vae": {
"id": "7b3fd9ad-a4ef-4e04-89fa-3832a9902dbd",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": ""
},
"tiled": {
"id": "5ac5680d-3add-4115-8ec0-9ef5bb87493b",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"fp32": {
"id": "db8297f5-55f8-452f-98cf-6572c2582152",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
}
},
"outputs": {
"image": {
"id": "d8778d0c-592a-4960-9280-4e77e00a7f33",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "c8b0a75a-f5de-4ff2-9227-f25bb2b97bec",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "83c05fbf-76b9-49ab-93c4-fa4b10e793e4",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 267,
"position": {
"x": 2037.861329274915,
"y": -329.8393457509562
}
},
{
"id": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"type": "invocation",
"data": {
"id": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"type": "denoise_latents",
"inputs": {
"positive_conditioning": {
"id": "751fb35b-3f23-45ce-af1c-053e74251337",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"negative_conditioning": {
"id": "b9dc06b6-7481-4db1-a8c2-39d22a5eacff",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"noise": {
"id": "6e15e439-3390-48a4-8031-01e0e19f0e1d",
"name": "noise",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"steps": {
"id": "bfdfb3df-760b-4d51-b17b-0abb38b976c2",
"name": "steps",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 10
},
"cfg_scale": {
"id": "47770858-322e-41af-8494-d8b63ed735f3",
"name": "cfg_scale",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"value": 7.5
},
"denoising_start": {
"id": "2ba78720-ee02-4130-a348-7bc3531f790b",
"name": "denoising_start",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 0
},
"denoising_end": {
"id": "a874dffb-d433-4d1a-9f59-af4367bb05e4",
"name": "denoising_end",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 1
},
"scheduler": {
"id": "36e021ad-b762-4fe4-ad4d-17f0291c40b2",
"name": "scheduler",
"type": "Scheduler",
"fieldKind": "input",
"label": "",
"value": "euler"
},
"unet": {
"id": "98d3282d-f9f6-4b5e-b9e8-58658f1cac78",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": ""
},
"control": {
"id": "f2ea3216-43d5-42b4-887f-36e8f7166d53",
"name": "control",
"type": "ControlPolymorphic",
"fieldKind": "input",
"label": ""
},
"ip_adapter": {
"id": "d0780610-a298-47c8-a54e-70e769e0dfe2",
"name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"t2i_adapter": {
"id": "fdb40970-185e-4ea8-8bb5-88f06f91f46a",
"name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "e05b538a-1b5a-4aa5-84b1-fd2361289a81",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"denoise_mask": {
"id": "463a419e-df30-4382-8ffb-b25b25abe425",
"name": "denoise_mask",
"type": "DenoiseMaskField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"latents": {
"id": "559ee688-66cf-4139-8b82-3d3aa69995ce",
"name": "latents",
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "0b4285c2-e8b9-48e5-98f6-0a49d3f98fd2",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "8b0881b9-45e5-47d5-b526-24b6661de0ee",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.4.0"
},
"width": 320,
"height": 646,
"position": {
"x": 1570.9941088179146,
"y": -407.6505491604564
}
}
],
"edges": [
{
"source": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
"sourceHandle": "collection",
"target": "1b89067c-3f6b-42c8-991f-e3055789b251",
"targetHandle": "collection",
"id": "reactflow__edge-1b7e0df8-8589-4915-a4ea-c0088f15d642collection-1b89067c-3f6b-42c8-991f-e3055789b251collection",
"type": "default"
},
{
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"sourceHandle": "clip",
"target": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"targetHandle": "clip",
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426clip-fc9d0e35-a6de-4a19-84e1-c72497c823f6clip",
"type": "default"
},
{
"source": "1b89067c-3f6b-42c8-991f-e3055789b251",
"sourceHandle": "item",
"target": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"targetHandle": "prompt",
"id": "reactflow__edge-1b89067c-3f6b-42c8-991f-e3055789b251item-fc9d0e35-a6de-4a19-84e1-c72497c823f6prompt",
"type": "default"
},
{
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"sourceHandle": "clip",
"target": "c2eaf1ba-5708-4679-9e15-945b8b432692",
"targetHandle": "clip",
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426clip-c2eaf1ba-5708-4679-9e15-945b8b432692clip",
"type": "default"
},
{
"source": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
"sourceHandle": "value",
"target": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"targetHandle": "seed",
"id": "reactflow__edge-dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5value-0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77seed",
"type": "default"
},
{
"source": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
"sourceHandle": "conditioning",
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"targetHandle": "positive_conditioning",
"id": "reactflow__edge-fc9d0e35-a6de-4a19-84e1-c72497c823f6conditioning-2fb1577f-0a56-4f12-8711-8afcaaaf1d5epositive_conditioning",
"type": "default"
},
{
"source": "c2eaf1ba-5708-4679-9e15-945b8b432692",
"sourceHandle": "conditioning",
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"targetHandle": "negative_conditioning",
"id": "reactflow__edge-c2eaf1ba-5708-4679-9e15-945b8b432692conditioning-2fb1577f-0a56-4f12-8711-8afcaaaf1d5enegative_conditioning",
"type": "default"
},
{
"source": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
"sourceHandle": "noise",
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"targetHandle": "noise",
"id": "reactflow__edge-0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77noise-2fb1577f-0a56-4f12-8711-8afcaaaf1d5enoise",
"type": "default"
},
{
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"sourceHandle": "unet",
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"targetHandle": "unet",
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426unet-2fb1577f-0a56-4f12-8711-8afcaaaf1d5eunet",
"type": "default"
},
{
"source": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
"sourceHandle": "latents",
"target": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"targetHandle": "latents",
"id": "reactflow__edge-2fb1577f-0a56-4f12-8711-8afcaaaf1d5elatents-491ec988-3c77-4c37-af8a-39a0c4e7a2a1latents",
"type": "default"
},
{
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
"sourceHandle": "vae",
"target": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
"targetHandle": "vae",
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426vae-491ec988-3c77-4c37-af8a-39a0c4e7a2a1vae",
"type": "default"
}
]
}

View File

@ -1,758 +0,0 @@
{
"name": "QR Code Monster",
"author": "InvokeAI",
"description": "Sample workflow for create images with QR code Monster ControlNet",
"version": "1.0.1",
"contact": "invoke@invoke.ai",
"tags": "qrcode, controlnet, default",
"notes": "",
"exposedFields": [
{
"nodeId": "a6cc0986-f928-4a7e-8d44-ba2d4b36f54a",
"fieldName": "image"
},
{
"nodeId": "aca3b054-bfba-4392-bd20-6476f59504df",
"fieldName": "prompt"
},
{
"nodeId": "3db7cee0-31e2-4a3d-94a1-268cb16177dd",
"fieldName": "prompt"
}
],
"meta": {
"version": "1.0.0"
},
"nodes": [
{
"id": "3db7cee0-31e2-4a3d-94a1-268cb16177dd",
"type": "invocation",
"data": {
"id": "3db7cee0-31e2-4a3d-94a1-268cb16177dd",
"type": "compel",
"inputs": {
"prompt": {
"id": "6a1fe244-5656-4f8c-91d1-1fb474e28807",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Negative Prompt",
"value": ""
},
"clip": {
"id": "f24688f3-29b8-4a2d-8603-046e5a5c7250",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "700528eb-3f8b-4745-b540-34f919b5b228",
"name": "conditioning",
"type": "ConditioningField",
"fieldKind": "output"
}
},
"label": "Prompt",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 261,
"position": {
"x": 773.0502679628016,
"y": 1622.4836086770556
}
},
{
"id": "610384f1-6f0c-4847-a9a2-37ce7f456ed1",
"type": "invocation",
"data": {
"id": "610384f1-6f0c-4847-a9a2-37ce7f456ed1",
"type": "main_model_loader",
"inputs": {
"model": {
"id": "cb36b6d3-6c1f-4911-a200-646745b0ff74",
"name": "model",
"type": "MainModelField",
"fieldKind": "input",
"label": "",
"value": {
"model_name": "stable-diffusion-v1-5",
"base_model": "sd-1",
"model_type": "main"
}
}
},
"outputs": {
"unet": {
"id": "7246895b-b252-49bc-b952-8d801b4672f7",
"name": "unet",
"type": "UNetField",
"fieldKind": "output"
},
"clip": {
"id": "3c2aedb8-30d5-4d4b-99df-d06a0d7bedc6",
"name": "clip",
"type": "ClipField",
"fieldKind": "output"
},
"vae": {
"id": "b9743815-5501-4bbb-8bde-8bd6ba298a4e",
"name": "vae",
"type": "VaeField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 226,
"position": {
"x": 211.58866462619744,
"y": 1376.0542388105248
}
},
{
"id": "aca3b054-bfba-4392-bd20-6476f59504df",
"type": "invocation",
"data": {
"id": "aca3b054-bfba-4392-bd20-6476f59504df",
"type": "compel",
"inputs": {
"prompt": {
"id": "6a1fe244-5656-4f8c-91d1-1fb474e28807",
"name": "prompt",
"type": "string",
"fieldKind": "input",
"label": "Positive Prompt",
"value": ""
},
"clip": {
"id": "f24688f3-29b8-4a2d-8603-046e5a5c7250",
"name": "clip",
"type": "ClipField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"conditioning": {
"id": "700528eb-3f8b-4745-b540-34f919b5b228",
"name": "conditioning",
"type": "ConditioningField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 261,
"position": {
"x": 770.6491131680111,
"y": 1316.379247112241
}
},
{
"id": "a6cc0986-f928-4a7e-8d44-ba2d4b36f54a",
"type": "invocation",
"data": {
"id": "a6cc0986-f928-4a7e-8d44-ba2d4b36f54a",
"type": "image",
"inputs": {
"image": {
"id": "89ba5d58-28c9-4e04-a5df-79fb7a6f3531",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": "QR Code / Hidden Image"
}
},
"outputs": {
"image": {
"id": "54335653-0e17-42da-b9e8-83c5fb5af670",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "a3c65953-39ea-4d97-8858-d65154ff9d11",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "2c7db511-ebc9-4286-a46b-bc11e0fd779f",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 225,
"position": {
"x": 700.5034176864369,
"y": 1981.749600549388
}
},
{
"id": "280fd8a7-3b0c-49fe-8be4-6246e08b6c9a",
"type": "invocation",
"data": {
"id": "280fd8a7-3b0c-49fe-8be4-6246e08b6c9a",
"type": "noise",
"inputs": {
"seed": {
"id": "7c6c76dd-127b-4829-b1ec-430790cb7ed7",
"name": "seed",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 0
},
"width": {
"id": "8ec6a525-a421-40d8-a17e-39e7b6836438",
"name": "width",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 512
},
"height": {
"id": "6af1e58a-e2ee-4ec4-9f06-d8d0412922ca",
"name": "height",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 512
},
"use_cpu": {
"id": "26662e99-5720-43a6-a5d8-06c9dab0e261",
"name": "use_cpu",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": true
}
},
"outputs": {
"noise": {
"id": "cb4c4dfc-a744-49eb-af4f-677448e28407",
"name": "noise",
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "97e87be6-e81f-40a3-a522-28ebe4aad0ac",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "80784420-f1e1-47b0-bd1d-1d381a15e22d",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": false,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 32,
"position": {
"x": 1182.460291960481,
"y": 1759.592972960265
}
},
{
"id": "2ac03cf6-0326-454a-bed0-d8baef2bf30d",
"type": "invocation",
"data": {
"id": "2ac03cf6-0326-454a-bed0-d8baef2bf30d",
"type": "controlnet",
"inputs": {
"image": {
"id": "1f683889-9f14-40c8-af29-4b991b211a3a",
"name": "image",
"type": "ImageField",
"fieldKind": "input",
"label": ""
},
"control_model": {
"id": "a933b21d-22c1-4e06-818f-15416b971282",
"name": "control_model",
"type": "ControlNetModelField",
"fieldKind": "input",
"label": "",
"value": {
"model_name": "qrcode_monster",
"base_model": "sd-1"
}
},
"control_weight": {
"id": "198a0825-e55e-4496-bc54-c3d7b02f3d75",
"name": "control_weight",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"value": 1.4
},
"begin_step_percent": {
"id": "c85ce42f-22af-42a0-8993-676002fb275e",
"name": "begin_step_percent",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 0
},
"end_step_percent": {
"id": "a61a65c4-9e6f-4fe2-96a5-1294d17ec6e4",
"name": "end_step_percent",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 1
},
"control_mode": {
"id": "1aa45cfa-0249-46b7-bf24-3e38e92f5fa0",
"name": "control_mode",
"type": "enum",
"fieldKind": "input",
"label": "",
"value": "balanced"
},
"resize_mode": {
"id": "a89d3cb9-a141-4cea-bb49-977bf267377b",
"name": "resize_mode",
"type": "enum",
"fieldKind": "input",
"label": "",
"value": "just_resize"
}
},
"outputs": {
"control": {
"id": "c9a1fc7e-cb25-45a9-adff-1a97c9ff04d6",
"name": "control",
"type": "ControlField",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 508,
"position": {
"x": 1165.434407461108,
"y": 1862.916856351665
}
},
{
"id": "28542b66-5a00-4780-a318-0a036d2df914",
"type": "invocation",
"data": {
"id": "28542b66-5a00-4780-a318-0a036d2df914",
"type": "l2i",
"inputs": {
"metadata": {
"id": "a38e8f55-7f2c-4fcc-a71f-d51e2eb0374a",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "80e97bc8-e716-4175-9115-5b58495aa30c",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"vae": {
"id": "5641bce6-ac2b-47eb-bb32-2f290026b7e1",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": ""
},
"tiled": {
"id": "9e75eb16-ae48-47ed-b180-e0409d377436",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"fp32": {
"id": "0518b0ce-ee37-437b-8437-cc2976a3279f",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
}
},
"outputs": {
"image": {
"id": "ec2ff985-a7eb-401f-92c4-1217cddad6a2",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "ba1d1720-6d67-4eca-9e9d-b97d08636774",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "10bcf8f4-6394-422f-b0c0-51680f3bfb25",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 267,
"position": {
"x": 2110.8415693683014,
"y": 1487.253341116115
}
},
{
"id": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"type": "invocation",
"data": {
"id": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"type": "denoise_latents",
"inputs": {
"positive_conditioning": {
"id": "8e6aceaa-a986-4ab2-9c04-5b1027b3daf6",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"negative_conditioning": {
"id": "fbbaa712-ca1a-420b-9016-763f2a29d68c",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"noise": {
"id": "a3b3d5d2-c0f9-4b89-a9b3-8de9418f7bb5",
"name": "noise",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"steps": {
"id": "e491e664-2f8c-4f49-b3e4-57b051fbb9c5",
"name": "steps",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 10
},
"cfg_scale": {
"id": "f0318abd-ed65-4cad-86a7-48d1c19a6d14",
"name": "cfg_scale",
"type": "FloatPolymorphic",
"fieldKind": "input",
"label": "",
"value": 7.5
},
"denoising_start": {
"id": "f7c24c51-496f-44c4-836a-c734e529fec0",
"name": "denoising_start",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 0
},
"denoising_end": {
"id": "54f7656a-fb0d-4d9e-a459-f700f7dccd2e",
"name": "denoising_end",
"type": "float",
"fieldKind": "input",
"label": "",
"value": 1
},
"scheduler": {
"id": "363ee440-040d-499b-bf84-bf5391b08681",
"name": "scheduler",
"type": "Scheduler",
"fieldKind": "input",
"label": "",
"value": "euler"
},
"unet": {
"id": "5c93d4e5-1064-4700-ab1d-d12e1e9b5ba7",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": ""
},
"control": {
"id": "e1948eb3-7407-43b0-93e3-139470f186b7",
"name": "control",
"type": "ControlPolymorphic",
"fieldKind": "input",
"label": ""
},
"ip_adapter": {
"id": "5675b2c3-adfb-49ee-b33c-26bdbfab1fed",
"name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"t2i_adapter": {
"id": "89cd4ab3-3bfc-4063-9de5-91d42305c651",
"name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "ec01df90-5042-418d-b6d6-86b251c13770",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"denoise_mask": {
"id": "561cde00-cb20-42ae-9bd3-4f477f73fbe1",
"name": "denoise_mask",
"type": "DenoiseMaskField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"latents": {
"id": "f9addefe-efcc-4e01-8945-6ebbc934b002",
"name": "latents",
"type": "LatentsField",
"fieldKind": "output"
},
"width": {
"id": "6d48f78b-d681-422a-8677-0111bd0625f1",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "f25997b8-6316-44ce-b696-b82e4ed51ae5",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": true,
"version": "1.4.0"
},
"width": 320,
"height": 646,
"position": {
"x": 1597.9598293300219,
"y": 1420.4637727891632
}
},
{
"id": "59349822-af20-4e0e-a53f-3ba135d00c3f",
"type": "invocation",
"data": {
"id": "59349822-af20-4e0e-a53f-3ba135d00c3f",
"type": "rand_int",
"inputs": {
"low": {
"id": "051f22f9-2d4f-414f-bc51-84af2d626efa",
"name": "low",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 0
},
"high": {
"id": "77206186-f264-4224-9589-f925cf903dc9",
"name": "high",
"type": "integer",
"fieldKind": "input",
"label": "",
"value": 2147483647
}
},
"outputs": {
"value": {
"id": "a7ed9387-3a24-4d34-b7c5-f713bd544ab1",
"name": "value",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": false,
"notes": "",
"embedWorkflow": false,
"isIntermediate": true,
"useCache": false,
"version": "1.0.0"
},
"width": 320,
"height": 32,
"position": {
"x": 1178.16746986153,
"y": 1663.9433412808876
}
}
],
"edges": [
{
"source": "59349822-af20-4e0e-a53f-3ba135d00c3f",
"target": "280fd8a7-3b0c-49fe-8be4-6246e08b6c9a",
"id": "59349822-af20-4e0e-a53f-3ba135d00c3f-280fd8a7-3b0c-49fe-8be4-6246e08b6c9a-collapsed",
"type": "collapsed"
},
{
"source": "610384f1-6f0c-4847-a9a2-37ce7f456ed1",
"sourceHandle": "clip",
"target": "aca3b054-bfba-4392-bd20-6476f59504df",
"targetHandle": "clip",
"id": "reactflow__edge-610384f1-6f0c-4847-a9a2-37ce7f456ed1clip-aca3b054-bfba-4392-bd20-6476f59504dfclip",
"type": "default"
},
{
"source": "610384f1-6f0c-4847-a9a2-37ce7f456ed1",
"sourceHandle": "clip",
"target": "3db7cee0-31e2-4a3d-94a1-268cb16177dd",
"targetHandle": "clip",
"id": "reactflow__edge-610384f1-6f0c-4847-a9a2-37ce7f456ed1clip-3db7cee0-31e2-4a3d-94a1-268cb16177ddclip",
"type": "default"
},
{
"source": "a6cc0986-f928-4a7e-8d44-ba2d4b36f54a",
"sourceHandle": "image",
"target": "2ac03cf6-0326-454a-bed0-d8baef2bf30d",
"targetHandle": "image",
"id": "reactflow__edge-a6cc0986-f928-4a7e-8d44-ba2d4b36f54aimage-2ac03cf6-0326-454a-bed0-d8baef2bf30dimage",
"type": "default"
},
{
"source": "610384f1-6f0c-4847-a9a2-37ce7f456ed1",
"sourceHandle": "vae",
"target": "28542b66-5a00-4780-a318-0a036d2df914",
"targetHandle": "vae",
"id": "reactflow__edge-610384f1-6f0c-4847-a9a2-37ce7f456ed1vae-28542b66-5a00-4780-a318-0a036d2df914vae",
"type": "default"
},
{
"source": "280fd8a7-3b0c-49fe-8be4-6246e08b6c9a",
"sourceHandle": "noise",
"target": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"targetHandle": "noise",
"id": "reactflow__edge-280fd8a7-3b0c-49fe-8be4-6246e08b6c9anoise-9755ae4c-ef30-4db3-80f6-a31f98979a11noise",
"type": "default"
},
{
"source": "3db7cee0-31e2-4a3d-94a1-268cb16177dd",
"sourceHandle": "conditioning",
"target": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"targetHandle": "negative_conditioning",
"id": "reactflow__edge-3db7cee0-31e2-4a3d-94a1-268cb16177ddconditioning-9755ae4c-ef30-4db3-80f6-a31f98979a11negative_conditioning",
"type": "default"
},
{
"source": "aca3b054-bfba-4392-bd20-6476f59504df",
"sourceHandle": "conditioning",
"target": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"targetHandle": "positive_conditioning",
"id": "reactflow__edge-aca3b054-bfba-4392-bd20-6476f59504dfconditioning-9755ae4c-ef30-4db3-80f6-a31f98979a11positive_conditioning",
"type": "default"
},
{
"source": "610384f1-6f0c-4847-a9a2-37ce7f456ed1",
"sourceHandle": "unet",
"target": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"targetHandle": "unet",
"id": "reactflow__edge-610384f1-6f0c-4847-a9a2-37ce7f456ed1unet-9755ae4c-ef30-4db3-80f6-a31f98979a11unet",
"type": "default"
},
{
"source": "2ac03cf6-0326-454a-bed0-d8baef2bf30d",
"sourceHandle": "control",
"target": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"targetHandle": "control",
"id": "reactflow__edge-2ac03cf6-0326-454a-bed0-d8baef2bf30dcontrol-9755ae4c-ef30-4db3-80f6-a31f98979a11control",
"type": "default"
},
{
"source": "9755ae4c-ef30-4db3-80f6-a31f98979a11",
"sourceHandle": "latents",
"target": "28542b66-5a00-4780-a318-0a036d2df914",
"targetHandle": "latents",
"id": "reactflow__edge-9755ae4c-ef30-4db3-80f6-a31f98979a11latents-28542b66-5a00-4780-a318-0a036d2df914latents",
"type": "default"
},
{
"source": "59349822-af20-4e0e-a53f-3ba135d00c3f",
"sourceHandle": "value",
"target": "280fd8a7-3b0c-49fe-8be4-6246e08b6c9a",
"targetHandle": "seed",
"id": "reactflow__edge-59349822-af20-4e0e-a53f-3ba135d00c3fvalue-280fd8a7-3b0c-49fe-8be4-6246e08b6c9aseed",
"type": "default"
}
]
}

View File

@ -26,6 +26,10 @@
{ {
"nodeId": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204", "nodeId": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"fieldName": "style" "fieldName": "style"
},
{
"nodeId": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"fieldName": "steps"
} }
], ],
"meta": { "meta": {
@ -36,6 +40,7 @@
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204", "id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204", "id": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"type": "sdxl_compel_prompt", "type": "sdxl_compel_prompt",
"inputs": { "inputs": {
@ -130,12 +135,10 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 793, "height": 764,
"position": { "position": {
"x": 1275, "x": 1275,
"y": -350 "y": -350
@ -145,6 +148,7 @@
"id": "55705012-79b9-4aac-9f26-c0b10309785b", "id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "55705012-79b9-4aac-9f26-c0b10309785b", "id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "noise", "type": "noise",
"inputs": { "inputs": {
@ -205,9 +209,7 @@
"isOpen": false, "isOpen": false,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 32, "height": 32,
@ -216,10 +218,83 @@
"y": -300 "y": -300
} }
}, },
{
"id": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"type": "invocation",
"data": {
"version": "1.0.0",
"id": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"type": "l2i",
"inputs": {
"tiled": {
"id": "24f5bc7b-f6a1-425d-8ab1-f50b4db5d0df",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"fp32": {
"id": "b146d873-ffb9-4767-986a-5360504841a2",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": true
},
"latents": {
"id": "65441abd-7713-4b00-9d8d-3771404002e8",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"vae": {
"id": "a478b833-6e13-4611-9a10-842c89603c74",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"image": {
"id": "c87ae925-f858-417a-8940-8708ba9b4b53",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "4bcb8512-b5a1-45f1-9e52-6e92849f9d6c",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "23e41c00-a354-48e8-8f59-5875679c27ab",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": true,
"isIntermediate": false
},
"width": 320,
"height": 224,
"position": {
"x": 2025,
"y": -250
}
},
{ {
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2", "id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2", "id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "rand_int", "type": "rand_int",
"inputs": { "inputs": {
@ -252,9 +327,7 @@
"isOpen": false, "isOpen": false,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": false,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 32, "height": 32,
@ -267,6 +340,7 @@
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22", "id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22", "id": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"type": "sdxl_model_loader", "type": "sdxl_model_loader",
"inputs": { "inputs": {
@ -277,7 +351,7 @@
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"value": { "value": {
"model_name": "stable-diffusion-xl-base-1-0", "model_name": "stable-diffusion-xl-base-1.0",
"base_model": "sdxl", "base_model": "sdxl",
"model_type": "main" "model_type": "main"
} }
@ -313,12 +387,10 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 258, "height": 234,
"position": { "position": {
"x": 475, "x": 475,
"y": 25 "y": 25
@ -328,6 +400,7 @@
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08", "id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "faf965a4-7530-427b-b1f3-4ba6505c2a08", "id": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"type": "sdxl_compel_prompt", "type": "sdxl_compel_prompt",
"inputs": { "inputs": {
@ -422,143 +495,48 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 793, "height": 764,
"position": { "position": {
"x": 900, "x": 900,
"y": -350 "y": -350
} }
}, },
{ {
"id": "63e91020-83b2-4f35-b174-ad9692aabb48", "id": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"type": "invocation", "type": "invocation",
"data": { "data": {
"id": "63e91020-83b2-4f35-b174-ad9692aabb48", "version": "1.0.0",
"type": "l2i", "id": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"inputs": {
"metadata": {
"id": "88971324-3fdb-442d-b8b7-7612478a8622",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "da0e40cb-c49f-4fa5-9856-338b91a65f6b",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"vae": {
"id": "ae5164ce-1710-4ec5-a83a-6113a0d1b5c0",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": ""
},
"tiled": {
"id": "2ccfd535-1a7b-4ecf-84db-9430a64fb3d7",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"fp32": {
"id": "64f07d5a-54a2-429c-8c5b-0c2a3a8e5cd5",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
}
},
"outputs": {
"image": {
"id": "9b281eaa-6504-407d-a5ca-1e5e8020a4bf",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "98e545f3-b53b-490d-b94d-bed9418ccc75",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "4a74bd43-d7f7-4c7f-bb3b-d09bb2992c46",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": false,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 267,
"position": {
"x": 2112.5626808057173,
"y": -174.24042139280238
}
},
{
"id": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"type": "invocation",
"data": {
"id": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb",
"type": "denoise_latents", "type": "denoise_latents",
"inputs": { "inputs": {
"positive_conditioning": {
"id": "29b73dfa-a06e-4b4a-a844-515b9eb93a81",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"negative_conditioning": {
"id": "a81e6f5b-f4de-4919-b483-b6e2f067465a",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"noise": { "noise": {
"id": "4ba06bb7-eb45-4fb9-9984-31001b545587", "id": "4884a4b7-cc19-4fea-83c7-1f940e6edd24",
"name": "noise", "name": "noise",
"type": "LatentsField", "type": "LatentsField",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
}, },
"steps": { "steps": {
"id": "36ee8a45-ca69-44bc-9bc3-aa881e6045c0", "id": "4c61675c-b6b9-41ac-b187-b5c13b587039",
"name": "steps", "name": "steps",
"type": "integer", "type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"value": 10 "value": 36
}, },
"cfg_scale": { "cfg_scale": {
"id": "2a2024e0-a736-46ec-933c-c1c1ebe96943", "id": "f8213f35-4637-4a1a-83f4-1f8cfb9ccd2c",
"name": "cfg_scale", "name": "cfg_scale",
"type": "FloatPolymorphic", "type": "float",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"value": 7.5 "value": 7.5
}, },
"denoising_start": { "denoising_start": {
"id": "be219d5e-41b7-430a-8fb5-bc21a31ad219", "id": "01e2f30d-0acd-4e21-98b9-a9b8e24c6db2",
"name": "denoising_start", "name": "denoising_start",
"type": "float", "type": "float",
"fieldKind": "input", "fieldKind": "input",
@ -566,7 +544,7 @@
"value": 0 "value": 0
}, },
"denoising_end": { "denoising_end": {
"id": "3adfb7ae-c9f7-4a40-b6e0-4c2050bd1a99", "id": "3db95479-a73b-4c75-9b44-08daec16b224",
"name": "denoising_end", "name": "denoising_end",
"type": "float", "type": "float",
"fieldKind": "input", "fieldKind": "input",
@ -574,71 +552,71 @@
"value": 1 "value": 1
}, },
"scheduler": { "scheduler": {
"id": "14423e0d-7215-4ee0-b065-f9e95eaa8d7d", "id": "db8430a9-64c3-4c54-ae38-9f597cf7b6d5",
"name": "scheduler", "name": "scheduler",
"type": "Scheduler", "type": "Scheduler",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"value": "euler" "value": "euler"
}, },
"unet": {
"id": "e73bbf98-6489-492b-b83c-faed215febac",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": ""
},
"control": { "control": {
"id": "dab351b3-0c86-4ea5-9782-4e8edbfb0607", "id": "599b49e8-6435-4576-be41-a5155f3a17e3",
"name": "control", "name": "control",
"type": "ControlPolymorphic", "type": "ControlField",
"fieldKind": "input",
"label": ""
},
"ip_adapter": {
"id": "192daea0-a90a-43cc-a2ee-0114a8e90318",
"name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"t2i_adapter": {
"id": "ee386a55-d4c7-48c1-ac57-7bc4e3aada7a",
"name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
}, },
"latents": { "latents": {
"id": "3a922c6a-3d8c-4c9e-b3ec-2f4d81cda077", "id": "226f9e91-454e-4159-9fa6-019c0cf29277",
"name": "latents", "name": "latents",
"type": "LatentsField", "type": "LatentsField",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
}, },
"denoise_mask": { "denoise_mask": {
"id": "cd7ce032-835f-495f-8b45-d57272f33132", "id": "de019cb6-7fb5-45bf-a266-22e20889893f",
"name": "denoise_mask", "name": "denoise_mask",
"type": "DenoiseMaskField", "type": "DenoiseMaskField",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
},
"positive_conditioning": {
"id": "02fc400a-110d-470e-8411-f404f966a949",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"negative_conditioning": {
"id": "4bd3bdfa-fcf4-42be-8e47-1e314255798f",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"unet": {
"id": "7c2d58a8-b5f1-4e63-8ffd-8ada52c35832",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": ""
} }
}, },
"outputs": { "outputs": {
"latents": { "latents": {
"id": "6260b84f-8361-470a-98d8-5b22a45c2d8c", "id": "6a6fa492-de26-4e95-b1d9-a322fe37eb13",
"name": "latents", "name": "latents",
"type": "LatentsField", "type": "LatentsField",
"fieldKind": "output" "fieldKind": "output"
}, },
"width": { "width": {
"id": "aede0ecf-25b6-46be-aa30-b77f79715deb", "id": "a9790729-7d6c-4418-903d-4da961fccf56",
"name": "width", "name": "width",
"type": "integer", "type": "integer",
"fieldKind": "output" "fieldKind": "output"
}, },
"height": { "height": {
"id": "519abf62-d475-48ef-ab8f-66136bc0e499", "id": "fa74efe5-7330-4a3c-b256-c82a544585b4",
"name": "height", "name": "height",
"type": "integer", "type": "integer",
"fieldKind": "output" "fieldKind": "output"
@ -648,15 +626,13 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.4.0"
}, },
"width": 320, "width": 320,
"height": 646, "height": 558,
"position": { "position": {
"x": 1642.955772577545, "x": 1650,
"y": -230.2485847594651 "y": -250
} }
} }
], ],
@ -710,42 +686,50 @@
{ {
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22", "source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"sourceHandle": "vae", "sourceHandle": "vae",
"target": "63e91020-83b2-4f35-b174-ad9692aabb48", "target": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"targetHandle": "vae", "targetHandle": "vae",
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22vae-63e91020-83b2-4f35-b174-ad9692aabb48vae", "id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22vae-dbcd2f98-d809-48c8-bf64-2635f88a2fe9vae",
"type": "default" "type": "default"
}, },
{ {
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22", "source": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"sourceHandle": "unet", "sourceHandle": "latents",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb", "target": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"targetHandle": "unet", "targetHandle": "latents",
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22unet-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbunet", "id": "reactflow__edge-87ee6243-fb0d-4f77-ad5f-56591659339elatents-dbcd2f98-d809-48c8-bf64-2635f88a2fe9latents",
"type": "default" "type": "default"
}, },
{ {
"source": "faf965a4-7530-427b-b1f3-4ba6505c2a08", "source": "faf965a4-7530-427b-b1f3-4ba6505c2a08",
"sourceHandle": "conditioning", "sourceHandle": "conditioning",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb", "target": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"targetHandle": "positive_conditioning", "targetHandle": "positive_conditioning",
"id": "reactflow__edge-faf965a4-7530-427b-b1f3-4ba6505c2a08conditioning-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbpositive_conditioning", "id": "reactflow__edge-faf965a4-7530-427b-b1f3-4ba6505c2a08conditioning-87ee6243-fb0d-4f77-ad5f-56591659339epositive_conditioning",
"type": "default" "type": "default"
}, },
{ {
"source": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204", "source": "3193ad09-a7c2-4bf4-a3a9-1c61cc33a204",
"sourceHandle": "conditioning", "sourceHandle": "conditioning",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb", "target": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"targetHandle": "negative_conditioning", "targetHandle": "negative_conditioning",
"id": "reactflow__edge-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204conditioning-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbnegative_conditioning", "id": "reactflow__edge-3193ad09-a7c2-4bf4-a3a9-1c61cc33a204conditioning-87ee6243-fb0d-4f77-ad5f-56591659339enegative_conditioning",
"type": "default"
},
{
"source": "30d3289c-773c-4152-a9d2-bd8a99c8fd22",
"sourceHandle": "unet",
"target": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"targetHandle": "unet",
"id": "reactflow__edge-30d3289c-773c-4152-a9d2-bd8a99c8fd22unet-87ee6243-fb0d-4f77-ad5f-56591659339eunet",
"type": "default" "type": "default"
}, },
{ {
"source": "55705012-79b9-4aac-9f26-c0b10309785b", "source": "55705012-79b9-4aac-9f26-c0b10309785b",
"sourceHandle": "noise", "sourceHandle": "noise",
"target": "50a36525-3c0a-4cc5-977c-e4bfc3fd6dfb", "target": "87ee6243-fb0d-4f77-ad5f-56591659339e",
"targetHandle": "noise", "targetHandle": "noise",
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-50a36525-3c0a-4cc5-977c-e4bfc3fd6dfbnoise", "id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-87ee6243-fb0d-4f77-ad5f-56591659339enoise",
"type": "default" "type": "default"
} }
] ]
} }

File diff suppressed because it is too large Load Diff

View File

@ -18,6 +18,10 @@
{ {
"nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"fieldName": "prompt" "fieldName": "prompt"
},
{
"nodeId": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"fieldName": "steps"
} }
], ],
"meta": { "meta": {
@ -28,6 +32,7 @@
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"type": "compel", "type": "compel",
"inputs": { "inputs": {
@ -59,21 +64,20 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 261, "height": 235,
"position": { "position": {
"x": 995.7263915923627, "x": 1400,
"y": 239.67783573351227 "y": -75
} }
}, },
{ {
"id": "55705012-79b9-4aac-9f26-c0b10309785b", "id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "55705012-79b9-4aac-9f26-c0b10309785b", "id": "55705012-79b9-4aac-9f26-c0b10309785b",
"type": "noise", "type": "noise",
"inputs": { "inputs": {
@ -134,21 +138,92 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 389, "height": 364,
"position": { "position": {
"x": 993.4442117555518, "x": 1000,
"y": 605.6757415334787 "y": 350
}
},
{
"id": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"type": "invocation",
"data": {
"version": "1.0.0",
"id": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"type": "l2i",
"inputs": {
"tiled": {
"id": "24f5bc7b-f6a1-425d-8ab1-f50b4db5d0df",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"fp32": {
"id": "b146d873-ffb9-4767-986a-5360504841a2",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"latents": {
"id": "65441abd-7713-4b00-9d8d-3771404002e8",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"vae": {
"id": "a478b833-6e13-4611-9a10-842c89603c74",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": ""
}
},
"outputs": {
"image": {
"id": "c87ae925-f858-417a-8940-8708ba9b4b53",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "4bcb8512-b5a1-45f1-9e52-6e92849f9d6c",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "23e41c00-a354-48e8-8f59-5875679c27ab",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": true,
"isIntermediate": false
},
"width": 320,
"height": 266,
"position": {
"x": 1800,
"y": 200
} }
}, },
{ {
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8", "id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8", "id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"type": "main_model_loader", "type": "main_model_loader",
"inputs": { "inputs": {
@ -186,24 +261,23 @@
} }
}, },
"label": "", "label": "",
"isOpen": true, "isOpen": false,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 226, "height": 32,
"position": { "position": {
"x": 163.04436745878343, "x": 1000,
"y": 254.63156870373479 "y": 200
} }
}, },
{ {
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c", "id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c", "id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"type": "compel", "type": "compel",
"inputs": { "inputs": {
@ -235,21 +309,20 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 261, "height": 235,
"position": { "position": {
"x": 595.7263915923627, "x": 1000,
"y": 239.67783573351227 "y": -75
} }
}, },
{ {
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2", "id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "invocation", "type": "invocation",
"data": { "data": {
"version": "1.0.0",
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2", "id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
"type": "rand_int", "type": "rand_int",
"inputs": { "inputs": {
@ -279,66 +352,51 @@
} }
}, },
"label": "Random Seed", "label": "Random Seed",
"isOpen": true, "isOpen": false,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": false,
"version": "1.0.0"
}, },
"width": 320, "width": 320,
"height": 218, "height": 32,
"position": { "position": {
"x": 541.094822888628, "x": 1000,
"y": 694.5704476446829 "y": 275
} }
}, },
{ {
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "id": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"type": "invocation", "type": "invocation",
"data": { "data": {
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "version": "1.0.0",
"id": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"type": "denoise_latents", "type": "denoise_latents",
"inputs": { "inputs": {
"positive_conditioning": {
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"negative_conditioning": {
"id": "9393779e-796c-4f64-b740-902a1177bf53",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"noise": { "noise": {
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1", "id": "8b18f3eb-40d2-45c1-9a9d-28d6af0dce2b",
"name": "noise", "name": "noise",
"type": "LatentsField", "type": "LatentsField",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
}, },
"steps": { "steps": {
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88", "id": "0be4373c-46f3-441c-80a7-a4bb6ceb498c",
"name": "steps", "name": "steps",
"type": "integer", "type": "integer",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"value": 10 "value": 36
}, },
"cfg_scale": { "cfg_scale": {
"id": "87dd04d3-870e-49e1-98bf-af003a810109", "id": "107267ce-4666-4cd7-94b3-7476b7973ae9",
"name": "cfg_scale", "name": "cfg_scale",
"type": "FloatPolymorphic", "type": "float",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"value": 7.5 "value": 7.5
}, },
"denoising_start": { "denoising_start": {
"id": "f369d80f-4931-4740-9bcd-9f0620719fab", "id": "d2ce9f0f-5fc2-48b2-b917-53442941e9a1",
"name": "denoising_start", "name": "denoising_start",
"type": "float", "type": "float",
"fieldKind": "input", "fieldKind": "input",
@ -346,7 +404,7 @@
"value": 0 "value": 0
}, },
"denoising_end": { "denoising_end": {
"id": "747d10e5-6f02-445c-994c-0604d814de8c", "id": "8ad51505-b8d0-422a-beb8-96fc6fc6b65f",
"name": "denoising_end", "name": "denoising_end",
"type": "float", "type": "float",
"fieldKind": "input", "fieldKind": "input",
@ -354,71 +412,71 @@
"value": 1 "value": 1
}, },
"scheduler": { "scheduler": {
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b", "id": "53092874-a43b-4623-91a2-76e62fdb1f2e",
"name": "scheduler", "name": "scheduler",
"type": "Scheduler", "type": "Scheduler",
"fieldKind": "input", "fieldKind": "input",
"label": "", "label": "",
"value": "euler" "value": "euler"
}, },
"unet": {
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": ""
},
"control": { "control": {
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd", "id": "7abe57cc-469d-437e-ad72-a18efa28215f",
"name": "control", "name": "control",
"type": "ControlPolymorphic", "type": "ControlField",
"fieldKind": "input",
"label": ""
},
"ip_adapter": {
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
"name": "ip_adapter",
"type": "IPAdapterPolymorphic",
"fieldKind": "input",
"label": ""
},
"t2i_adapter": {
"id": "75e67b09-952f-4083-aaf4-6b804d690412",
"name": "t2i_adapter",
"type": "T2IAdapterPolymorphic",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
}, },
"latents": { "latents": {
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43", "id": "add8bbe5-14d0-42d4-a867-9c65ab8dd129",
"name": "latents", "name": "latents",
"type": "LatentsField", "type": "LatentsField",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
}, },
"denoise_mask": { "denoise_mask": {
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa", "id": "f373a190-0fc8-45b7-ae62-c4aa8e9687e1",
"name": "denoise_mask", "name": "denoise_mask",
"type": "DenoiseMaskField", "type": "DenoiseMaskField",
"fieldKind": "input", "fieldKind": "input",
"label": "" "label": ""
},
"positive_conditioning": {
"id": "c7160303-8a23-4f15-9197-855d48802a7f",
"name": "positive_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"negative_conditioning": {
"id": "fd750efa-1dfc-4d0b-accb-828e905ba320",
"name": "negative_conditioning",
"type": "ConditioningField",
"fieldKind": "input",
"label": ""
},
"unet": {
"id": "af1f41ba-ce2a-4314-8d7f-494bb5800381",
"name": "unet",
"type": "UNetField",
"fieldKind": "input",
"label": ""
} }
}, },
"outputs": { "outputs": {
"latents": { "latents": {
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38", "id": "8508d04d-f999-4a44-94d0-388ab1401d27",
"name": "latents", "name": "latents",
"type": "LatentsField", "type": "LatentsField",
"fieldKind": "output" "fieldKind": "output"
}, },
"width": { "width": {
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0", "id": "93dc8287-0a2a-4320-83a4-5e994b7ba23e",
"name": "width", "name": "width",
"type": "integer", "type": "integer",
"fieldKind": "output" "fieldKind": "output"
}, },
"height": { "height": {
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d", "id": "d9862f5c-0ab5-46fa-8c29-5059bb581d96",
"name": "height", "name": "height",
"type": "integer", "type": "integer",
"fieldKind": "output" "fieldKind": "output"
@ -428,95 +486,13 @@
"isOpen": true, "isOpen": true,
"notes": "", "notes": "",
"embedWorkflow": false, "embedWorkflow": false,
"isIntermediate": true, "isIntermediate": true
"useCache": true,
"version": "1.4.0"
}, },
"width": 320, "width": 320,
"height": 646, "height": 558,
"position": { "position": {
"x": 1476.5794704734735, "x": 1400,
"y": 256.80174342731783 "y": 200
}
},
{
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "invocation",
"data": {
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"type": "l2i",
"inputs": {
"metadata": {
"id": "ab375f12-0042-4410-9182-29e30db82c85",
"name": "metadata",
"type": "MetadataField",
"fieldKind": "input",
"label": ""
},
"latents": {
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
"name": "latents",
"type": "LatentsField",
"fieldKind": "input",
"label": ""
},
"vae": {
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
"name": "vae",
"type": "VaeField",
"fieldKind": "input",
"label": ""
},
"tiled": {
"id": "da52059a-0cee-4668-942f-519aa794d739",
"name": "tiled",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
},
"fp32": {
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
"name": "fp32",
"type": "boolean",
"fieldKind": "input",
"label": "",
"value": false
}
},
"outputs": {
"image": {
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
"name": "image",
"type": "ImageField",
"fieldKind": "output"
},
"width": {
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
"name": "width",
"type": "integer",
"fieldKind": "output"
},
"height": {
"id": "230f359c-b4ea-436c-b372-332d7dcdca85",
"name": "height",
"type": "integer",
"fieldKind": "output"
}
},
"label": "",
"isOpen": true,
"notes": "",
"embedWorkflow": false,
"isIntermediate": false,
"useCache": true,
"version": "1.0.0"
},
"width": 320,
"height": 267,
"position": {
"x": 2037.9648469717395,
"y": 426.10844427600136
} }
} }
], ],
@ -546,52 +522,52 @@
"type": "default" "type": "default"
}, },
{ {
"source": "55705012-79b9-4aac-9f26-c0b10309785b", "source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "noise", "sourceHandle": "vae",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "target": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"targetHandle": "noise", "targetHandle": "vae",
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise", "id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-dbcd2f98-d809-48c8-bf64-2635f88a2fe9vae",
"type": "default"
},
{
"source": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"sourceHandle": "latents",
"target": "dbcd2f98-d809-48c8-bf64-2635f88a2fe9",
"targetHandle": "latents",
"id": "reactflow__edge-75899702-fa44-46d2-b2d5-3e17f234c3e7latents-dbcd2f98-d809-48c8-bf64-2635f88a2fe9latents",
"type": "default" "type": "default"
}, },
{ {
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c", "source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
"sourceHandle": "conditioning", "sourceHandle": "conditioning",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "target": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"targetHandle": "positive_conditioning", "targetHandle": "positive_conditioning",
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning", "id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-75899702-fa44-46d2-b2d5-3e17f234c3e7positive_conditioning",
"type": "default" "type": "default"
}, },
{ {
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402", "source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
"sourceHandle": "conditioning", "sourceHandle": "conditioning",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "target": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"targetHandle": "negative_conditioning", "targetHandle": "negative_conditioning",
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning", "id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-75899702-fa44-46d2-b2d5-3e17f234c3e7negative_conditioning",
"type": "default" "type": "default"
}, },
{ {
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8", "source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "unet", "sourceHandle": "unet",
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "target": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"targetHandle": "unet", "targetHandle": "unet",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet", "id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-75899702-fa44-46d2-b2d5-3e17f234c3e7unet",
"type": "default" "type": "default"
}, },
{ {
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c", "source": "55705012-79b9-4aac-9f26-c0b10309785b",
"sourceHandle": "latents", "sourceHandle": "noise",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f", "target": "75899702-fa44-46d2-b2d5-3e17f234c3e7",
"targetHandle": "latents", "targetHandle": "noise",
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents", "id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-75899702-fa44-46d2-b2d5-3e17f234c3e7noise",
"type": "default"
},
{
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
"sourceHandle": "vae",
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
"targetHandle": "vae",
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
"type": "default" "type": "default"
} }
] ]
} }

View File

@ -1,7 +1,7 @@
@echo off @echo off
setlocal EnableExtensions EnableDelayedExpansion setlocal EnableExtensions EnableDelayedExpansion
@rem This script requires the user to install Python 3.10 or higher. All other @rem This script requires the user to install Python 3.9 or higher. All other
@rem requirements are downloaded as needed. @rem requirements are downloaded as needed.
@rem change to the script's directory @rem change to the script's directory
@ -19,7 +19,7 @@ set INVOKEAI_VERSION=latest
set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/ set INSTRUCTIONS=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting set TROUBLESHOOTING=https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/#troubleshooting
set PYTHON_URL=https://www.python.org/downloads/windows/ set PYTHON_URL=https://www.python.org/downloads/windows/
set MINIMUM_PYTHON_VERSION=3.10.0 set MINIMUM_PYTHON_VERSION=3.9.0
set PYTHON_URL=https://www.python.org/downloads/release/python-3109/ set PYTHON_URL=https://www.python.org/downloads/release/python-3109/
set err_msg=An error has occurred and the script could not continue. set err_msg=An error has occurred and the script could not continue.
@ -28,7 +28,8 @@ set err_msg=An error has occurred and the script could not continue.
echo This script will install InvokeAI and its dependencies. echo This script will install InvokeAI and its dependencies.
echo. echo.
echo BEFORE YOU START PLEASE MAKE SURE TO DO THE FOLLOWING echo BEFORE YOU START PLEASE MAKE SURE TO DO THE FOLLOWING
echo 1. Install python 3.10 or 3.11. Python version 3.9 is no longer supported. echo 1. Install python 3.9 or 3.10. Python version 3.11 and above are
echo not supported at the moment.
echo 2. Double-click on the file WinLongPathsEnabled.reg in order to echo 2. Double-click on the file WinLongPathsEnabled.reg in order to
echo enable long path support on your system. echo enable long path support on your system.
echo 3. Install the Visual C++ core libraries. echo 3. Install the Visual C++ core libraries.
@ -45,19 +46,19 @@ echo ***** Checking and Updating Python *****
call python --version >.tmp1 2>.tmp2 call python --version >.tmp1 2>.tmp2
if %errorlevel% == 1 ( if %errorlevel% == 1 (
set err_msg=Please install Python 3.10-11. See %INSTRUCTIONS% for details. set err_msg=Please install Python 3.10. See %INSTRUCTIONS% for details.
goto err_exit goto err_exit
) )
for /f "tokens=2" %%i in (.tmp1) do set python_version=%%i for /f "tokens=2" %%i in (.tmp1) do set python_version=%%i
if "%python_version%" == "" ( if "%python_version%" == "" (
set err_msg=No python was detected on your system. Please install Python version %MINIMUM_PYTHON_VERSION% or higher. We recommend Python 3.10.12 from %PYTHON_URL% set err_msg=No python was detected on your system. Please install Python version %MINIMUM_PYTHON_VERSION% or higher. We recommend Python 3.10.9 from %PYTHON_URL%
goto err_exit goto err_exit
) )
call :compareVersions %MINIMUM_PYTHON_VERSION% %python_version% call :compareVersions %MINIMUM_PYTHON_VERSION% %python_version%
if %errorlevel% == 1 ( if %errorlevel% == 1 (
set err_msg=Your version of Python is too low. You need at least %MINIMUM_PYTHON_VERSION% but you have %python_version%. We recommend Python 3.10.12 from %PYTHON_URL% set err_msg=Your version of Python is too low. You need at least %MINIMUM_PYTHON_VERSION% but you have %python_version%. We recommend Python 3.10.9 from %PYTHON_URL%
goto err_exit goto err_exit
) )

View File

@ -8,10 +8,10 @@ cd $scriptdir
function version { echo "$@" | awk -F. '{ printf("%d%03d%03d%03d\n", $1,$2,$3,$4); }'; } function version { echo "$@" | awk -F. '{ printf("%d%03d%03d%03d\n", $1,$2,$3,$4); }'; }
MINIMUM_PYTHON_VERSION=3.10.0 MINIMUM_PYTHON_VERSION=3.9.0
MAXIMUM_PYTHON_VERSION=3.11.100 MAXIMUM_PYTHON_VERSION=3.11.100
PYTHON="" PYTHON=""
for candidate in python3.11 python3.10 python3 python ; do for candidate in python3.11 python3.10 python3.9 python3 python ; do
if ppath=`which $candidate`; then if ppath=`which $candidate`; then
# when using `pyenv`, the executable for an inactive Python version will exist but will not be operational # when using `pyenv`, the executable for an inactive Python version will exist but will not be operational
# we check that this found executable can actually run # we check that this found executable can actually run

View File

@ -13,7 +13,7 @@ from pathlib import Path
from tempfile import TemporaryDirectory from tempfile import TemporaryDirectory
from typing import Union from typing import Union
SUPPORTED_PYTHON = ">=3.10.0,<=3.11.100" SUPPORTED_PYTHON = ">=3.9.0,<=3.11.100"
INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"] INSTALLER_REQS = ["rich", "semver", "requests", "plumbum", "prompt-toolkit"]
BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp" BOOTSTRAP_VENV_PREFIX = "invokeai-installer-tmp"
@ -67,6 +67,7 @@ class Installer:
# Cleaning up temporary directories on Windows results in a race condition # Cleaning up temporary directories on Windows results in a race condition
# and a stack trace. # and a stack trace.
# `ignore_cleanup_errors` was only added in Python 3.10 # `ignore_cleanup_errors` was only added in Python 3.10
# users of Python 3.9 will see a gnarly stack trace on installer exit
if OS == "Windows" and int(platform.python_version_tuple()[1]) >= 10: if OS == "Windows" and int(platform.python_version_tuple()[1]) >= 10:
venv_dir = TemporaryDirectory(prefix=BOOTSTRAP_VENV_PREFIX, ignore_cleanup_errors=True) venv_dir = TemporaryDirectory(prefix=BOOTSTRAP_VENV_PREFIX, ignore_cleanup_errors=True)
else: else:
@ -138,6 +139,13 @@ class Installer:
except shutil.SameFileError: except shutil.SameFileError:
venv.create(venv_dir, with_pip=True, symlinks=True) venv.create(venv_dir, with_pip=True, symlinks=True)
# upgrade pip in Python 3.9 environments
if int(platform.python_version_tuple()[1]) == 9:
from plumbum import FG, local
pip = local[get_pip_from_venv(venv_dir)]
pip["install", "--upgrade", "pip"] & FG
return venv_dir return venv_dir
def install( def install(

View File

@ -4,7 +4,7 @@ Project homepage: https://github.com/invoke-ai/InvokeAI
Preparations: Preparations:
You will need to install Python 3.10 or higher for this installer You will need to install Python 3.9 or higher for this installer
to work. Instructions are given here: to work. Instructions are given here:
https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/ https://invoke-ai.github.io/InvokeAI/installation/INSTALL_AUTOMATED/
@ -14,15 +14,15 @@ Preparations:
python --version python --version
If all is well, it will print "Python 3.X.X", where the version number If all is well, it will print "Python 3.X.X", where the version number
is at least 3.10.*, and not higher than 3.11.*. is at least 3.9.*, and not higher than 3.11.*.
If this works, check the version of the Python package manager, pip: If this works, check the version of the Python package manager, pip:
pip --version pip --version
You should get a message that indicates that the pip package You should get a message that indicates that the pip package
installer was derived from Python 3.10 or 3.11. For example: installer was derived from Python 3.9 or 3.10. For example:
"pip 22.0.1 from /usr/bin/pip (python 3.10)" "pip 22.3.1 from /usr/bin/pip (python 3.9)"
Long Paths on Windows: Long Paths on Windows:

View File

@ -9,37 +9,41 @@ set INVOKEAI_ROOT=.
:start :start
echo Desired action: echo Desired action:
echo 1. Generate images with the browser-based interface echo 1. Generate images with the browser-based interface
echo 2. Run textual inversion training echo 2. Explore InvokeAI nodes using a command-line interface
echo 3. Merge models (diffusers type only) echo 3. Run textual inversion training
echo 4. Download and install models echo 4. Merge models (diffusers type only)
echo 5. Change InvokeAI startup options echo 5. Download and install models
echo 6. Re-run the configure script to fix a broken install or to complete a major upgrade echo 6. Change InvokeAI startup options
echo 7. Open the developer console echo 7. Re-run the configure script to fix a broken install or to complete a major upgrade
echo 8. Update InvokeAI echo 8. Open the developer console
echo 9. Run the InvokeAI image database maintenance script echo 9. Update InvokeAI
echo 10. Command-line help echo 10. Run the InvokeAI image database maintenance script
echo 11. Command-line help
echo Q - Quit echo Q - Quit
set /P choice="Please enter 1-10, Q: [1] " set /P choice="Please enter 1-11, Q: [1] "
if not defined choice set choice=1 if not defined choice set choice=1
IF /I "%choice%" == "1" ( IF /I "%choice%" == "1" (
echo Starting the InvokeAI browser-based UI.. echo Starting the InvokeAI browser-based UI..
python .venv\Scripts\invokeai-web.exe %* python .venv\Scripts\invokeai-web.exe %*
) ELSE IF /I "%choice%" == "2" ( ) ELSE IF /I "%choice%" == "2" (
echo Starting the InvokeAI command-line..
python .venv\Scripts\invokeai.exe %*
) ELSE IF /I "%choice%" == "3" (
echo Starting textual inversion training.. echo Starting textual inversion training..
python .venv\Scripts\invokeai-ti.exe --gui python .venv\Scripts\invokeai-ti.exe --gui
) ELSE IF /I "%choice%" == "3" ( ) ELSE IF /I "%choice%" == "4" (
echo Starting model merging script.. echo Starting model merging script..
python .venv\Scripts\invokeai-merge.exe --gui python .venv\Scripts\invokeai-merge.exe --gui
) ELSE IF /I "%choice%" == "4" ( ) ELSE IF /I "%choice%" == "5" (
echo Running invokeai-model-install... echo Running invokeai-model-install...
python .venv\Scripts\invokeai-model-install.exe python .venv\Scripts\invokeai-model-install.exe
) ELSE IF /I "%choice%" == "5" (
echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --skip-sd-weight --skip-support-models
) ELSE IF /I "%choice%" == "6" ( ) ELSE IF /I "%choice%" == "6" (
echo Running invokeai-configure... echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --yes --skip-sd-weight python .venv\Scripts\invokeai-configure.exe --skip-sd-weight --skip-support-models
) ELSE IF /I "%choice%" == "7" ( ) ELSE IF /I "%choice%" == "7" (
echo Running invokeai-configure...
python .venv\Scripts\invokeai-configure.exe --yes --skip-sd-weight
) ELSE IF /I "%choice%" == "8" (
echo Developer Console echo Developer Console
echo Python command is: echo Python command is:
where python where python
@ -51,13 +55,13 @@ IF /I "%choice%" == "1" (
echo ************************* echo *************************
echo *** Type `exit` to quit this shell and deactivate the Python virtual environment *** echo *** Type `exit` to quit this shell and deactivate the Python virtual environment ***
call cmd /k call cmd /k
) ELSE IF /I "%choice%" == "8" ( ) ELSE IF /I "%choice%" == "9" (
echo Running invokeai-update... echo Running invokeai-update...
python -m invokeai.frontend.install.invokeai_update python -m invokeai.frontend.install.invokeai_update
) ELSE IF /I "%choice%" == "9" ( ) ELSE IF /I "%choice%" == "10" (
echo Running the db maintenance script... echo Running the db maintenance script...
python .venv\Scripts\invokeai-db-maintenance.exe python .venv\Scripts\invokeai-db-maintenance.exe
) ELSE IF /I "%choice%" == "10" ( ) ELSE IF /I "%choice%" == "11" (
echo Displaying command line help... echo Displaying command line help...
python .venv\Scripts\invokeai-web.exe --help %* python .venv\Scripts\invokeai-web.exe --help %*
pause pause

View File

@ -58,47 +58,52 @@ do_choice() {
invokeai-web $PARAMS invokeai-web $PARAMS
;; ;;
2) 2)
clear
printf "Explore InvokeAI nodes using a command-line interface\n"
invokeai $PARAMS
;;
3)
clear clear
printf "Textual inversion training\n" printf "Textual inversion training\n"
invokeai-ti --gui $PARAMS invokeai-ti --gui $PARAMS
;; ;;
3) 4)
clear clear
printf "Merge models (diffusers type only)\n" printf "Merge models (diffusers type only)\n"
invokeai-merge --gui $PARAMS invokeai-merge --gui $PARAMS
;; ;;
4) 5)
clear clear
printf "Download and install models\n" printf "Download and install models\n"
invokeai-model-install --root ${INVOKEAI_ROOT} invokeai-model-install --root ${INVOKEAI_ROOT}
;; ;;
5) 6)
clear clear
printf "Change InvokeAI startup options\n" printf "Change InvokeAI startup options\n"
invokeai-configure --root ${INVOKEAI_ROOT} --skip-sd-weights --skip-support-models invokeai-configure --root ${INVOKEAI_ROOT} --skip-sd-weights --skip-support-models
;; ;;
6) 7)
clear clear
printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n" printf "Re-run the configure script to fix a broken install or to complete a major upgrade\n"
invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only --skip-sd-weights invokeai-configure --root ${INVOKEAI_ROOT} --yes --default_only --skip-sd-weights
;; ;;
7) 8)
clear clear
printf "Open the developer console\n" printf "Open the developer console\n"
file_name=$(basename "${BASH_SOURCE[0]}") file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name" bash --init-file "$file_name"
;; ;;
8) 9)
clear clear
printf "Update InvokeAI\n" printf "Update InvokeAI\n"
python -m invokeai.frontend.install.invokeai_update python -m invokeai.frontend.install.invokeai_update
;; ;;
9) 10)
clear clear
printf "Running the db maintenance script\n" printf "Running the db maintenance script\n"
invokeai-db-maintenance --root ${INVOKEAI_ROOT} invokeai-db-maintenance --root ${INVOKEAI_ROOT}
;; ;;
10) 11)
clear clear
printf "Command-line help\n" printf "Command-line help\n"
invokeai-web --help invokeai-web --help
@ -116,15 +121,16 @@ do_choice() {
do_dialog() { do_dialog() {
options=( options=(
1 "Generate images with a browser-based interface" 1 "Generate images with a browser-based interface"
2 "Textual inversion training" 2 "Explore InvokeAI nodes using a command-line interface"
3 "Merge models (diffusers type only)" 3 "Textual inversion training"
4 "Download and install models" 4 "Merge models (diffusers type only)"
5 "Change InvokeAI startup options" 5 "Download and install models"
6 "Re-run the configure script to fix a broken install or to complete a major upgrade" 6 "Change InvokeAI startup options"
7 "Open the developer console" 7 "Re-run the configure script to fix a broken install or to complete a major upgrade"
8 "Update InvokeAI" 8 "Open the developer console"
9 "Run the InvokeAI image database maintenance script" 9 "Update InvokeAI"
10 "Command-line help" 10 "Run the InvokeAI image database maintenance script"
11 "Command-line help"
) )
choice=$(dialog --clear \ choice=$(dialog --clear \
@ -149,17 +155,18 @@ do_line_input() {
printf " ** For a more attractive experience, please install the 'dialog' utility using your package manager. **\n\n" printf " ** For a more attractive experience, please install the 'dialog' utility using your package manager. **\n\n"
printf "What would you like to do?\n" printf "What would you like to do?\n"
printf "1: Generate images using the browser-based interface\n" printf "1: Generate images using the browser-based interface\n"
printf "2: Run textual inversion training\n" printf "2: Explore InvokeAI nodes using the command-line interface\n"
printf "3: Merge models (diffusers type only)\n" printf "3: Run textual inversion training\n"
printf "4: Download and install models\n" printf "4: Merge models (diffusers type only)\n"
printf "5: Change InvokeAI startup options\n" printf "5: Download and install models\n"
printf "6: Re-run the configure script to fix a broken install\n" printf "6: Change InvokeAI startup options\n"
printf "7: Open the developer console\n" printf "7: Re-run the configure script to fix a broken install\n"
printf "8: Update InvokeAI\n" printf "8: Open the developer console\n"
printf "9: Run the InvokeAI image database maintenance script\n" printf "9: Update InvokeAI\n"
printf "10: Command-line help\n" printf "10: Run the InvokeAI image database maintenance script\n"
printf "11: Command-line help\n"
printf "Q: Quit\n\n" printf "Q: Quit\n\n"
read -p "Please enter 1-10, Q: [1] " yn read -p "Please enter 1-11, Q: [1] " yn
choice=${yn:='1'} choice=${yn:='1'}
do_choice $choice do_choice $choice
clear clear

View File

@ -1,37 +1,38 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import sqlite3
from logging import Logger from logging import Logger
from invokeai.app.services.workflow_image_records.workflow_image_records_sqlite import SqliteWorkflowImageRecordsStorage from invokeai.app.services.board_image_record_storage import SqliteBoardImageRecordStorage
from invokeai.app.services.board_images import BoardImagesService, BoardImagesServiceDependencies
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.session_processor.session_processor_default import DefaultSessionProcessor
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.urls import LocalUrlService
from invokeai.backend.util.logging import InvokeAILogger from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__ from invokeai.version.invokeai_version import __version__
from ..services.board_image_records.board_image_records_sqlite import SqliteBoardImageRecordStorage from ..services.default_graphs import create_system_graphs
from ..services.board_images.board_images_default import BoardImagesService from ..services.download_manager import DownloadQueueService
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.boards.boards_default import BoardService from ..services.image_file_storage import DiskImageFileStorage
from ..services.config import InvokeAIAppConfig from ..services.invocation_queue import MemoryInvocationQueue
from ..services.image_files.image_files_disk import DiskImageFileStorage
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
from ..services.images.images_default import ImageService
from ..services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from ..services.invocation_processor.invocation_processor_default import DefaultInvocationProcessor
from ..services.invocation_queue.invocation_queue_memory import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices
from ..services.invocation_stats.invocation_stats_default import InvocationStatsService from ..services.invocation_stats import InvocationStatsService
from ..services.invoker import Invoker from ..services.invoker import Invoker
from ..services.item_storage.item_storage_sqlite import SqliteItemStorage from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..services.latents_storage.latents_storage_disk import DiskLatentsStorage from ..services.model_install_service import ModelInstallService
from ..services.latents_storage.latents_storage_forward_cache import ForwardCacheLatentsStorage from ..services.model_loader_service import ModelLoadService
from ..services.model_manager.model_manager_default import ModelManagerService from ..services.model_record_service import ModelRecordServiceBase
from ..services.names.names_default import SimpleNameService from ..services.processor import DefaultInvocationProcessor
from ..services.session_processor.session_processor_default import DefaultSessionProcessor from ..services.sqlite import SqliteItemStorage
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue from ..services.thread import lock
from ..services.shared.default_graphs import create_system_graphs
from ..services.shared.graph import GraphExecutionState, LibraryGraph
from ..services.shared.sqlite import SqliteDatabase
from ..services.urls.urls_default import LocalUrlService
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from .events import FastAPIEventService from .events import FastAPIEventService
@ -65,68 +66,108 @@ class ApiDependencies:
logger.info(f"Root directory = {str(config.root_path)}") logger.info(f"Root directory = {str(config.root_path)}")
logger.debug(f"Internet connectivity is {config.internet_available}") logger.debug(f"Internet connectivity is {config.internet_available}")
events = FastAPIEventService(event_handler_id)
output_folder = config.output_path output_folder = config.output_path
db = SqliteDatabase(config, logger) # TODO: build a file/path manager?
if config.use_memory_db:
db_location = ":memory:"
else:
db_path = config.db_path
db_path.parent.mkdir(parents=True, exist_ok=True)
db_location = str(db_path)
configuration = config logger.info(f"Using database at {db_location}")
logger = logger db_conn = sqlite3.connect(db_location, check_same_thread=False) # TODO: figure out a better threading solution
if config.log_sql:
db_conn.set_trace_callback(print)
db_conn.execute("PRAGMA foreign_keys = ON;")
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
conn=db_conn, table_name="graph_executions", lock=lock
)
board_image_records = SqliteBoardImageRecordStorage(db=db)
board_images = BoardImagesService()
board_records = SqliteBoardRecordStorage(db=db)
boards = BoardService()
events = FastAPIEventService(event_handler_id)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
image_files = DiskImageFileStorage(f"{output_folder}/images")
image_records = SqliteImageRecordStorage(db=db)
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
model_manager = ModelManagerService(config, logger)
names = SimpleNameService()
performance_statistics = InvocationStatsService()
processor = DefaultInvocationProcessor()
queue = MemoryInvocationQueue()
session_processor = DefaultSessionProcessor()
session_queue = SqliteSessionQueue(db=db)
urls = LocalUrlService() urls = LocalUrlService()
workflow_image_records = SqliteWorkflowImageRecordsStorage(db=db) image_record_storage = SqliteImageRecordStorage(conn=db_conn, lock=lock)
workflow_records = SqliteWorkflowRecordsStorage(db=db) image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
board_record_storage = SqliteBoardRecordStorage(conn=db_conn, lock=lock)
board_image_record_storage = SqliteBoardImageRecordStorage(conn=db_conn, lock=lock)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
)
download_queue = DownloadQueueService(event_bus=events)
model_record_store = ModelRecordServiceBase.open(config, conn=db_conn, lock=lock)
model_loader = ModelLoadService(config, model_record_store)
model_installer = ModelInstallService(config, queue=download_queue, store=model_record_store, event_bus=events)
services = InvocationServices( services = InvocationServices(
board_image_records=board_image_records,
board_images=board_images,
board_records=board_records,
boards=boards,
configuration=configuration,
events=events, events=events,
graph_execution_manager=graph_execution_manager,
graph_library=graph_library,
image_files=image_files,
image_records=image_records,
images=images,
invocation_cache=invocation_cache,
latents=latents, latents=latents,
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, lock=lock, table_name="graphs"),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
configuration=config,
performance_statistics=InvocationStatsService(graph_execution_manager),
logger=logger, logger=logger,
model_manager=model_manager, download_queue=download_queue,
names=names, model_record_store=model_record_store,
performance_statistics=performance_statistics, model_loader=model_loader,
processor=processor, model_installer=model_installer,
queue=queue, session_queue=SqliteSessionQueue(conn=db_conn, lock=lock),
session_processor=session_processor, session_processor=DefaultSessionProcessor(),
session_queue=session_queue, invocation_cache=MemoryInvocationCache(max_cache_size=config.node_cache_size),
urls=urls,
workflow_image_records=workflow_image_records,
workflow_records=workflow_records,
) )
create_system_graphs(services.graph_library) create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services) ApiDependencies.invoker = Invoker(services)
db.clean() try:
lock.acquire()
db_conn.execute("VACUUM;")
db_conn.commit()
logger.info("Cleaned database")
finally:
lock.release()
@staticmethod @staticmethod
def shutdown(): def shutdown():

View File

@ -7,7 +7,7 @@ from typing import Any
from fastapi_events.dispatcher import dispatch from fastapi_events.dispatcher import dispatch
from ..services.events.events_base import EventServiceBase from ..services.events import EventServiceBase
class FastAPIEventService(EventServiceBase): class FastAPIEventService(EventServiceBase):

View File

@ -4,9 +4,9 @@ from fastapi import Body, HTTPException, Path, Query
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from invokeai.app.services.board_records.board_records_common import BoardChanges from invokeai.app.services.board_record_storage import BoardChanges
from invokeai.app.services.boards.boards_common import BoardDTO from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.models.board_record import BoardDTO
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies

View File

@ -1,17 +1,16 @@
import io import io
import traceback
from typing import Optional from typing import Optional
from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile from fastapi import Body, HTTPException, Path, Query, Request, Response, UploadFile
from fastapi.responses import FileResponse from fastapi.responses import FileResponse
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from PIL import Image from PIL import Image
from pydantic import BaseModel, Field, ValidationError from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import MetadataField, MetadataFieldValidator, WorkflowFieldValidator from invokeai.app.invocations.metadata import ImageMetadata
from invokeai.app.services.image_records.image_records_common import ImageCategory, ImageRecordChanges, ResourceOrigin from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO, ImageUrlsDTO from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.models.image_record import ImageDTO, ImageRecordChanges, ImageUrlsDTO
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
@ -43,41 +42,20 @@ async def upload_image(
crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"), crop_visible: Optional[bool] = Query(default=False, description="Whether to crop the image"),
) -> ImageDTO: ) -> ImageDTO:
"""Uploads an image""" """Uploads an image"""
if not file.content_type or not file.content_type.startswith("image"): if not file.content_type.startswith("image"):
raise HTTPException(status_code=415, detail="Not an image") raise HTTPException(status_code=415, detail="Not an image")
metadata = None
workflow = None
contents = await file.read() contents = await file.read()
try: try:
pil_image = Image.open(io.BytesIO(contents)) pil_image = Image.open(io.BytesIO(contents))
if crop_visible: if crop_visible:
bbox = pil_image.getbbox() bbox = pil_image.getbbox()
pil_image = pil_image.crop(bbox) pil_image = pil_image.crop(bbox)
except Exception: except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc()) # Error opening the image
raise HTTPException(status_code=415, detail="Failed to read image") raise HTTPException(status_code=415, detail="Failed to read image")
# TODO: retain non-invokeai metadata on upload?
# attempt to parse metadata from image
metadata_raw = pil_image.info.get("invokeai_metadata", None)
if metadata_raw:
try:
metadata = MetadataFieldValidator.validate_json(metadata_raw)
except ValidationError:
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
pass
# attempt to parse workflow from image
workflow_raw = pil_image.info.get("invokeai_workflow", None)
if workflow_raw is not None:
try:
workflow = WorkflowFieldValidator.validate_json(workflow_raw)
except ValidationError:
ApiDependencies.invoker.services.logger.warn("Failed to parse metadata for uploaded image")
pass
try: try:
image_dto = ApiDependencies.invoker.services.images.create( image_dto = ApiDependencies.invoker.services.images.create(
image=pil_image, image=pil_image,
@ -85,8 +63,6 @@ async def upload_image(
image_category=image_category, image_category=image_category,
session_id=session_id, session_id=session_id,
board_id=board_id, board_id=board_id,
metadata=metadata,
workflow=workflow,
is_intermediate=is_intermediate, is_intermediate=is_intermediate,
) )
@ -95,7 +71,6 @@ async def upload_image(
return image_dto return image_dto
except Exception: except Exception:
ApiDependencies.invoker.services.logger.error(traceback.format_exc())
raise HTTPException(status_code=500, detail="Failed to create image") raise HTTPException(status_code=500, detail="Failed to create image")
@ -112,7 +87,7 @@ async def delete_image(
pass pass
@images_router.delete("/intermediates", operation_id="clear_intermediates") @images_router.post("/clear-intermediates", operation_id="clear_intermediates")
async def clear_intermediates() -> int: async def clear_intermediates() -> int:
"""Clears all intermediates""" """Clears all intermediates"""
@ -124,17 +99,6 @@ async def clear_intermediates() -> int:
pass pass
@images_router.get("/intermediates", operation_id="get_intermediates_count")
async def get_intermediates_count() -> int:
"""Gets the count of intermediate images"""
try:
return ApiDependencies.invoker.services.images.get_intermediates_count()
except Exception:
raise HTTPException(status_code=500, detail="Failed to get intermediates")
pass
@images_router.patch( @images_router.patch(
"/i/{image_name}", "/i/{image_name}",
operation_id="update_image", operation_id="update_image",
@ -171,11 +135,11 @@ async def get_image_dto(
@images_router.get( @images_router.get(
"/i/{image_name}/metadata", "/i/{image_name}/metadata",
operation_id="get_image_metadata", operation_id="get_image_metadata",
response_model=Optional[MetadataField], response_model=ImageMetadata,
) )
async def get_image_metadata( async def get_image_metadata(
image_name: str = Path(description="The name of image to get"), image_name: str = Path(description="The name of image to get"),
) -> Optional[MetadataField]: ) -> ImageMetadata:
"""Gets an image's metadata""" """Gets an image's metadata"""
try: try:
@ -358,20 +322,3 @@ async def unstar_images_in_list(
return ImagesUpdatedFromListResult(updated_image_names=updated_image_names) return ImagesUpdatedFromListResult(updated_image_names=updated_image_names)
except Exception: except Exception:
raise HTTPException(status_code=500, detail="Failed to unstar images") raise HTTPException(status_code=500, detail="Failed to unstar images")
class ImagesDownloaded(BaseModel):
response: Optional[str] = Field(
description="If defined, the message to display to the user when images begin downloading"
)
@images_router.post("/download", operation_id="download_images_from_list", response_model=ImagesDownloaded)
async def download_images_from_list(
image_names: list[str] = Body(description="The list of names of images to download", embed=True),
board_id: Optional[str] = Body(
default=None, description="The board from which image should be downloaded from", embed=True
),
) -> ImagesDownloaded:
# return ImagesDownloaded(response="Your images are downloading")
raise HTTPException(status_code=501, detail="Endpoint is not yet implemented")

View File

@ -2,46 +2,60 @@
import pathlib import pathlib
from typing import Annotated, List, Literal, Optional, Union from enum import Enum
from typing import Any, List, Literal, Optional, Union
from fastapi import Body, Path, Query, Response from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter from pydantic import BaseModel, parse_obj_as
from starlette.exceptions import HTTPException from starlette.exceptions import HTTPException
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.services.download_manager import DownloadJobRemoteSource, DownloadJobStatus, UnknownJobIDException
from invokeai.app.services.model_convert import MergeInterpolationMethod, ModelConvert
from invokeai.app.services.model_install_service import ModelInstallJob
from invokeai.backend import BaseModelType, ModelType from invokeai.backend import BaseModelType, ModelType
from invokeai.backend.model_management import MergeInterpolationMethod from invokeai.backend.model_manager import (
from invokeai.backend.model_management.models import (
OPENAPI_MODEL_CONFIGS, OPENAPI_MODEL_CONFIGS,
DuplicateModelException,
InvalidModelException, InvalidModelException,
ModelNotFoundException, ModelConfigBase,
ModelSearch,
SchedulerPredictionType, SchedulerPredictionType,
UnknownModelException,
) )
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"]) models_router = APIRouter(prefix="/v1/models", tags=["models"])
UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] # NOTE: The generic configuration classes defined in invokeai.backend.model_manager.config
UpdateModelResponseValidator = TypeAdapter(UpdateModelResponse) # such as "MainCheckpointConfig" are repackaged by code originally written by Stalker
# into base-specific classes such as `abc.StableDiffusion1ModelCheckpointConfig`
# This is the reason for the calls to dict() followed by pydantic.parse_obj_as()
ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] # There are still numerous mypy errors here because it does not seem to like this
ImportModelResponseValidator = TypeAdapter(ImportModelResponse) # way of dynamically generating the typing hints below.
InvokeAIModelConfig: Any = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ConvertModelResponseValidator = TypeAdapter(ConvertModelResponse)
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel): class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]] models: List[InvokeAIModelConfig]
model_config = ConfigDict(use_enum_values=True)
ModelsListValidator = TypeAdapter(ModelsList) class ModelDownloadStatus(BaseModel):
"""Return information about a background installation job."""
job_id: int
source: str
priority: int
bytes: int
total_bytes: int
status: DownloadJobStatus
class JobControlOperation(str, Enum):
START = "Start"
PAUSE = "Pause"
CANCEL = "Cancel"
@models_router.get( @models_router.get(
@ -53,19 +67,22 @@ async def list_models(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"), base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"), model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList: ) -> ModelsList:
"""Gets a list of models""" """Get a list of models."""
record_store = ApiDependencies.invoker.services.model_record_store
if base_models and len(base_models) > 0: if base_models and len(base_models) > 0:
models_raw = list() models_raw = list()
for base_model in base_models: for base_model in base_models:
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)) models_raw.extend(
[x.dict() for x in record_store.search_by_name(base_model=base_model, model_type=model_type)]
)
else: else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type) models_raw = [x.dict() for x in record_store.search_by_name(model_type=model_type)]
models = ModelsListValidator.validate_python({"models": models_raw}) models = parse_obj_as(ModelsList, {"models": models_raw})
return models return models
@models_router.patch( @models_router.patch(
"/{base_model}/{model_type}/{model_name}", "/i/{key}",
operation_id="update_model", operation_id="update_model",
responses={ responses={
200: {"description": "The model was updated successfully"}, 200: {"description": "The model was updated successfully"},
@ -74,72 +91,36 @@ async def list_models(
409: {"description": "There is already a model corresponding to the new name"}, 409: {"description": "There is already a model corresponding to the new name"},
}, },
status_code=200, status_code=200,
response_model=UpdateModelResponse, response_model=InvokeAIModelConfig,
) )
async def update_model( async def update_model(
base_model: BaseModelType = Path(description="Base model"), key: str = Path(description="Unique key of model"),
model_type: ModelType = Path(description="The type of model"), info: InvokeAIModelConfig = Body(description="Model configuration"),
model_name: str = Path(description="model name"), ) -> InvokeAIModelConfig:
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed.""" """Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
info_dict = info.dict()
record_store = ApiDependencies.invoker.services.model_record_store
model_install = ApiDependencies.invoker.services.model_installer
try: try:
previous_info = ApiDependencies.invoker.services.model_manager.list_model( new_config = record_store.update_model(key, config=info_dict)
model_name=model_name, except UnknownModelException as e:
base_model=base_model,
model_type=model_type,
)
# rename operation requested
if info.model_name != model_name or info.base_model != base_model:
ApiDependencies.invoker.services.model_manager.rename_model(
base_model=base_model,
model_type=model_type,
model_name=model_name,
new_name=info.model_name,
new_base=info.base_model,
)
logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}")
# update information to support an update of attributes
model_name = info.model_name
base_model = info.base_model
new_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
if new_info.get("path") != previous_info.get(
"path"
): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get("path")
# replace empty string values with None/null to avoid phenomenon of vae: ''
info_dict = info.model_dump()
info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()}
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info_dict,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
model_response = UpdateModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
except ValueError as e: except ValueError as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e)) raise HTTPException(status_code=409, detail=str(e))
except Exception as e:
try:
# In the event that the model's name, type or base has changed, and the model itself
# resides in the invokeai root models directory, then the next statement will move
# the model file into its new canonical location.
new_config = model_install.sync_model_path(new_config.key)
model_response = parse_obj_as(InvokeAIModelConfig, new_config.dict())
except UnknownModelException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=400, detail=str(e)) raise HTTPException(status_code=409, detail=str(e))
return model_response return model_response
@ -155,7 +136,7 @@ async def update_model(
409: {"description": "There is already a model corresponding to this path or repo_id"}, 409: {"description": "There is already a model corresponding to this path or repo_id"},
}, },
status_code=201, status_code=201,
response_model=ImportModelResponse, response_model=ModelDownloadStatus,
) )
async def import_model( async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"), location: str = Body(description="A model path, repo_id or URL to import"),
@ -163,32 +144,47 @@ async def import_model(
description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints", description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints",
default=None, default=None,
), ),
) -> ImportModelResponse: priority: Optional[int] = Body(
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically""" description="Which import jobs run first. Lower values run before higher ones.",
default=10,
),
) -> ModelDownloadStatus:
"""
Add a model using its local path, repo_id, or remote URL.
location = location.strip("\"' ") Models will be downloaded, probed, configured and installed in a
items_to_import = {location} series of background threads. The return object has a `job_id` property
prediction_types = {x.value: x for x in SchedulerPredictionType} that can be used to control the download job.
The priority controls which import jobs run first. Lower values run before
higher ones.
The prediction_type applies to SDv2 models only and can be one of
"v_prediction", "epsilon", or "sample". Default if not provided is
"v_prediction".
Listen on the event bus for a series of `model_event` events with an `id`
matching the returned job id to get the progress, completion status, errors,
and information on the model that was installed.
"""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import( installer = ApiDependencies.invoker.services.model_installer
items_to_import=items_to_import, result = installer.install_model(
prediction_type_helper=lambda x: prediction_types.get(prediction_type), location,
probe_override={"prediction_type": SchedulerPredictionType(prediction_type) if prediction_type else None},
priority=priority,
) )
info = installed_models.get(location) return ModelDownloadStatus(
job_id=result.id,
if not info: source=result.source,
logger.error("Import failed") priority=result.priority,
raise HTTPException(status_code=415) bytes=result.bytes,
total_bytes=result.total_bytes,
logger.info(f"Successfully imported {location}, got {info}") status=result.status,
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name, base_model=info.base_model, model_type=info.model_type
) )
return ImportModelResponseValidator.validate_python(model_raw) except UnknownModelException as e:
except ModelNotFoundException as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
except InvalidModelException as e: except InvalidModelException as e:
@ -205,34 +201,40 @@ async def import_model(
responses={ responses={
201: {"description": "The model added successfully"}, 201: {"description": "The model added successfully"},
404: {"description": "The model could not be found"}, 404: {"description": "The model could not be found"},
424: {"description": "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"}, 409: {"description": "There is already a model corresponding to this path or repo_id"},
415: {"description": "Unrecognized file/folder format"},
}, },
status_code=201, status_code=201,
response_model=ImportModelResponse, response_model=InvokeAIModelConfig,
) )
async def add_model( async def add_model(
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"), info: InvokeAIModelConfig = Body(description="Model configuration"),
) -> ImportModelResponse: ) -> InvokeAIModelConfig:
"""Add a model using the configuration information appropriate for its type. Only local models can be added by path""" """
Add a model using the configuration information appropriate for its type. Only local models can be added by path.
This call will block until the model is installed.
"""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
path = info.path
installer = ApiDependencies.invoker.services.model_installer
record_store = ApiDependencies.invoker.services.model_record_store
try: try:
ApiDependencies.invoker.services.model_manager.add_model( key = installer.install_path(path)
info.model_name, logger.info(f"Created model {key} for {path}")
info.base_model, except DuplicateModelException as e:
info.model_type, logger.error(str(e))
model_attributes=info.model_dump(), raise HTTPException(status_code=409, detail=str(e))
) except InvalidModelException as e:
logger.info(f"Successfully added {info.model_name}") logger.error(str(e))
model_raw = ApiDependencies.invoker.services.model_manager.list_model( raise HTTPException(status_code=415)
model_name=info.model_name,
base_model=info.base_model, # update with the provided info
model_type=info.model_type, try:
) info_dict = info.dict()
return ImportModelResponseValidator.validate_python(model_raw) new_config = record_store.update_model(key, new_config=info_dict)
except ModelNotFoundException as e: return parse_obj_as(InvokeAIModelConfig, new_config.dict())
except UnknownModelException as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
except ValueError as e: except ValueError as e:
@ -241,36 +243,34 @@ async def add_model(
@models_router.delete( @models_router.delete(
"/{base_model}/{model_type}/{model_name}", "/i/{key}",
operation_id="del_model", operation_id="del_model",
responses={ responses={204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}},
204: {"description": "Model deleted successfully"},
404: {"description": "Model not found"},
},
status_code=204, status_code=204,
response_model=None, response_model=None,
) )
async def delete_model( async def delete_model(
base_model: BaseModelType = Path(description="Base model"), key: str = Path(description="Unique key of model to remove from model registry."),
model_type: ModelType = Path(description="The type of model"), delete_files: Optional[bool] = Query(description="Delete underlying files and directories as well.", default=False),
model_name: str = Path(description="model name"),
) -> Response: ) -> Response:
"""Delete Model""" """Delete Model"""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
ApiDependencies.invoker.services.model_manager.del_model( installer = ApiDependencies.invoker.services.model_installer
model_name, base_model=base_model, model_type=model_type if delete_files:
) installer.delete(key)
logger.info(f"Deleted model: {model_name}") else:
installer.unregister(key)
logger.info(f"Deleted model: {key}")
return Response(status_code=204) return Response(status_code=204)
except ModelNotFoundException as e: except UnknownModelException as e:
logger.error(str(e)) logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e)) raise HTTPException(status_code=404, detail=str(e))
@models_router.put( @models_router.put(
"/convert/{base_model}/{model_type}/{model_name}", "/convert/{key}",
operation_id="convert_model", operation_id="convert_model",
responses={ responses={
200: {"description": "Model converted successfully"}, 200: {"description": "Model converted successfully"},
@ -278,33 +278,26 @@ async def delete_model(
404: {"description": "Model not found"}, 404: {"description": "Model not found"},
}, },
status_code=200, status_code=200,
response_model=ConvertModelResponse, response_model=InvokeAIModelConfig,
) )
async def convert_model( async def convert_model(
base_model: BaseModelType = Path(description="Base model"), key: str = Path(description="Unique key of model to convert from checkpoint/safetensors to diffusers format."),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
convert_dest_directory: Optional[str] = Query( convert_dest_directory: Optional[str] = Query(
default=None, description="Save the converted model to the designated directory" default=None, description="Save the converted model to the designated directory"
), ),
) -> ConvertModelResponse: ) -> InvokeAIModelConfig:
"""Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none.""" """Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none."""
logger = ApiDependencies.invoker.services.logger
try: try:
logger.info(f"Converting model: {model_name}")
dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None
ApiDependencies.invoker.services.model_manager.convert_model( converter = ModelConvert(
model_name, loader=ApiDependencies.invoker.services.model_loader,
base_model=base_model, installer=ApiDependencies.invoker.services.model_installer,
model_type=model_type, store=ApiDependencies.invoker.services.model_record_store,
convert_dest_directory=dest,
) )
model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_config = converter.convert_model(key, dest_directory=dest)
model_name, base_model=base_model, model_type=model_type response = parse_obj_as(InvokeAIModelConfig, model_config.dict())
) except UnknownModelException as e:
response = ConvertModelResponseValidator.validate_python(model_raw) raise HTTPException(status_code=404, detail=f"Model '{key}' not found: {str(e)}")
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
except ValueError as e: except ValueError as e:
raise HTTPException(status_code=400, detail=str(e)) raise HTTPException(status_code=400, detail=str(e))
return response return response
@ -323,12 +316,12 @@ async def convert_model(
async def search_for_models( async def search_for_models(
search_path: pathlib.Path = Query(description="Directory path to search for models"), search_path: pathlib.Path = Query(description="Directory path to search for models"),
) -> List[pathlib.Path]: ) -> List[pathlib.Path]:
"""Search for all models in a server-local path."""
if not search_path.is_dir(): if not search_path.is_dir():
raise HTTPException( raise HTTPException(
status_code=404, status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory"
detail=f"The search path '{search_path}' does not exist or is not directory",
) )
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path) return ModelSearch().search(search_path)
@models_router.get( @models_router.get(
@ -342,7 +335,10 @@ async def search_for_models(
) )
async def list_ckpt_configs() -> List[pathlib.Path]: async def list_ckpt_configs() -> List[pathlib.Path]:
"""Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT.""" """Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT."""
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs() config = ApiDependencies.invoker.services.configuration
conf_path = config.legacy_conf_path
root_path = config.root_path
return [(conf_path / x).relative_to(root_path) for x in conf_path.glob("**/*.yaml")]
@models_router.post( @models_router.post(
@ -355,74 +351,182 @@ async def list_ckpt_configs() -> List[pathlib.Path]:
response_model=bool, response_model=bool,
) )
async def sync_to_config() -> bool: async def sync_to_config() -> bool:
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize """
in-memory data structures with disk data structures.""" Synchronize model in-memory data structures with disk.
ApiDependencies.invoker.services.model_manager.sync_to_config()
Call after making changes to models.yaml, autoimport directories
or models directory.
"""
installer = ApiDependencies.invoker.services.model_installer
installer.sync_to_config()
return True return True
# There's some weird pydantic-fastapi behaviour that requires this to be a separate class
# TODO: After a few updates, see if it works inside the route operation handler?
class MergeModelsBody(BaseModel):
model_names: List[str] = Field(description="model name", min_length=2, max_length=3)
merged_model_name: Optional[str] = Field(description="Name of destination model")
alpha: Optional[float] = Field(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5)
interp: Optional[MergeInterpolationMethod] = Field(description="Interpolation method")
force: Optional[bool] = Field(
description="Force merging of models created with different versions of diffusers",
default=False,
)
merge_dest_directory: Optional[str] = Field(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
)
model_config = ConfigDict(protected_namespaces=())
@models_router.put( @models_router.put(
"/merge/{base_model}", "/merge",
operation_id="merge_models", operation_id="merge_models",
responses={ responses={
200: {"description": "Model converted successfully"}, 200: {"description": "Model converted successfully"},
400: {"description": "Incompatible models"}, 400: {"description": "Incompatible models"},
404: {"description": "One or more models not found"}, 404: {"description": "One or more models not found"},
409: {"description": "An identical merged model is already installed"},
}, },
status_code=200, status_code=200,
response_model=MergeModelResponse, response_model=InvokeAIModelConfig,
) )
async def merge_models( async def merge_models(
body: Annotated[MergeModelsBody, Body(description="Model configuration", embed=True)], keys: List[str] = Body(description="model name", min_items=2, max_items=3),
base_model: BaseModelType = Path(description="Base model"), merged_model_name: Optional[str] = Body(description="Name of destination model", default=None),
) -> MergeModelResponse: alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
"""Convert a checkpoint model into a diffusers model""" interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(
description="Force merging of models created with different versions of diffusers", default=False
),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> InvokeAIModelConfig:
"""Merge the indicated diffusers model."""
logger = ApiDependencies.invoker.services.logger logger = ApiDependencies.invoker.services.logger
try: try:
logger.info( logger.info(f"Merging models: {keys} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
f"Merging models: {body.model_names} into {body.merge_dest_directory or '<MODELS>'}/{body.merged_model_name}" dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
converter = ModelConvert(
loader=ApiDependencies.invoker.services.model_loader,
installer=ApiDependencies.invoker.services.model_installer,
store=ApiDependencies.invoker.services.model_record_store,
) )
dest = pathlib.Path(body.merge_dest_directory) if body.merge_dest_directory else None result: ModelConfigBase = converter.merge_models(
result = ApiDependencies.invoker.services.model_manager.merge_models( model_keys=keys,
model_names=body.model_names, merged_model_name=merged_model_name,
base_model=base_model, alpha=alpha,
merged_model_name=body.merged_model_name or "+".join(body.model_names), interp=interp,
alpha=body.alpha, force=force,
interp=body.interp,
force=body.force,
merge_dest_directory=dest, merge_dest_directory=dest,
) )
model_raw = ApiDependencies.invoker.services.model_manager.list_model( response = parse_obj_as(InvokeAIModelConfig, result.dict())
result.name, except DuplicateModelException as e:
base_model=base_model, raise HTTPException(status_code=409, detail=str(e))
model_type=ModelType.Main, except UnknownModelException:
) raise HTTPException(status_code=404, detail=f"One or more of the models '{keys}' not found")
response = ConvertModelResponseValidator.validate_python(model_raw)
except ModelNotFoundException:
raise HTTPException(
status_code=404,
detail=f"One or more of the models '{body.model_names}' not found",
)
except ValueError as e: except ValueError as e:
raise HTTPException(status_code=400, detail=str(e)) raise HTTPException(status_code=400, detail=str(e))
return response return response
@models_router.get(
"/jobs",
operation_id="list_install_jobs",
responses={
200: {"description": "The control job was updated successfully"},
400: {"description": "Bad request"},
},
status_code=200,
response_model=List[ModelDownloadStatus],
)
async def list_install_jobs() -> List[ModelDownloadStatus]:
"""List active and pending model installation jobs."""
job_mgr = ApiDependencies.invoker.services.download_queue
jobs = job_mgr.list_jobs()
return [
ModelDownloadStatus(
job_id=x.id,
source=x.source,
priority=x.priority,
bytes=x.bytes,
total_bytes=x.total_bytes,
status=x.status,
)
for x in jobs
if isinstance(x, ModelInstallJob)
]
@models_router.patch(
"/jobs/control/{operation}/{job_id}",
operation_id="control_download_jobs",
responses={
200: {"description": "The control job was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The job could not be found"},
},
status_code=200,
response_model=ModelDownloadStatus,
)
async def control_download_jobs(
job_id: int = Path(description="Download/install job_id for start, pause and cancel operations"),
operation: JobControlOperation = Path(description="The operation to perform on the job."),
priority_delta: Optional[int] = Body(
description="Change in job priority for priority operations only. Negative numbers increase priority.",
default=None,
),
) -> ModelDownloadStatus:
"""Start, pause, cancel, or change the run priority of a running model install job."""
logger = ApiDependencies.invoker.services.logger
job_mgr = ApiDependencies.invoker.services.download_queue
try:
job = job_mgr.id_to_job(job_id)
if operation == JobControlOperation.START:
job_mgr.start_job(job_id)
elif operation == JobControlOperation.PAUSE:
job_mgr.pause_job(job_id)
elif operation == JobControlOperation.CANCEL:
job_mgr.cancel_job(job_id)
else:
raise ValueError("unknown operation {operation}")
bytes = 0
total_bytes = 0
if isinstance(job, DownloadJobRemoteSource):
bytes = job.bytes
total_bytes = job.total_bytes
return ModelDownloadStatus(
job_id=job_id,
source=job.source,
priority=job.priority,
status=job.status,
bytes=bytes,
total_bytes=total_bytes,
)
except UnknownJobIDException as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.patch(
"/jobs/cancel_all",
operation_id="cancel_all_download_jobs",
responses={
204: {"description": "All jobs cancelled successfully"},
400: {"description": "Bad request"},
},
)
async def cancel_all_download_jobs():
"""Cancel all model installation jobs."""
logger = ApiDependencies.invoker.services.logger
job_mgr = ApiDependencies.invoker.services.download_queue
logger.info("Cancelling all download jobs.")
job_mgr.cancel_all_jobs()
return Response(status_code=204)
@models_router.patch(
"/jobs/prune",
operation_id="prune_jobs",
responses={
204: {"description": "All completed jobs have been pruned"},
400: {"description": "Bad request"},
},
)
async def prune_jobs():
"""Prune all completed and errored jobs."""
mgr = ApiDependencies.invoker.services.download_queue
mgr.prune_jobs()
return Response(status_code=204)

View File

@ -12,13 +12,15 @@ from invokeai.app.services.session_queue.session_queue_common import (
CancelByBatchIDsResult, CancelByBatchIDsResult,
ClearResult, ClearResult,
EnqueueBatchResult, EnqueueBatchResult,
EnqueueGraphResult,
PruneResult, PruneResult,
SessionQueueItem, SessionQueueItem,
SessionQueueItemDTO, SessionQueueItemDTO,
SessionQueueStatus, SessionQueueStatus,
) )
from invokeai.app.services.shared.pagination import CursorPaginatedResults from invokeai.app.services.shared.models import CursorPaginatedResults
from ...services.graph import Graph
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"]) session_queue_router = APIRouter(prefix="/v1/queue", tags=["queue"])
@ -31,6 +33,23 @@ class SessionQueueAndProcessorStatus(BaseModel):
processor: SessionProcessorStatus processor: SessionProcessorStatus
@session_queue_router.post(
"/{queue_id}/enqueue_graph",
operation_id="enqueue_graph",
responses={
201: {"model": EnqueueGraphResult},
},
)
async def enqueue_graph(
queue_id: str = Path(description="The queue id to perform this operation on"),
graph: Graph = Body(description="The graph to enqueue"),
prepend: bool = Body(default=False, description="Whether or not to prepend this batch in the queue"),
) -> EnqueueGraphResult:
"""Enqueues a graph for single execution."""
return ApiDependencies.invoker.services.session_queue.enqueue_graph(queue_id=queue_id, graph=graph, prepend=prepend)
@session_queue_router.post( @session_queue_router.post(
"/{queue_id}/enqueue_batch", "/{queue_id}/enqueue_batch",
operation_id="enqueue_batch", operation_id="enqueue_batch",

View File

@ -1,50 +1,56 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Annotated, Optional, Union
from fastapi import HTTPException, Path from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from pydantic.fields import Field
from ...services.shared.graph import GraphExecutionState # Importing * is bad karma but needed here for node detection
from ...invocations import * # noqa: F401 F403
from ...invocations.baseinvocation import BaseInvocation
from ...services.graph import Edge, EdgeConnection, Graph, GraphExecutionState, NodeAlreadyExecutedError
from ...services.item_storage import PaginatedResults
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"]) session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
# @session_router.post( @session_router.post(
# "/", "/",
# operation_id="create_session", operation_id="create_session",
# responses={ responses={
# 200: {"model": GraphExecutionState}, 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid json"}, 400: {"description": "Invalid json"},
# }, },
# deprecated=True, deprecated=True,
# ) )
# async def create_session( async def create_session(
# queue_id: str = Query(default="", description="The id of the queue to associate the session with"), queue_id: str = Query(default="", description="The id of the queue to associate the session with"),
# graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with"), graph: Optional[Graph] = Body(default=None, description="The graph to initialize the session with"),
# ) -> GraphExecutionState: ) -> GraphExecutionState:
# """Creates a new session, optionally initializing it with an invocation graph""" """Creates a new session, optionally initializing it with an invocation graph"""
# session = ApiDependencies.invoker.create_execution_state(queue_id=queue_id, graph=graph) session = ApiDependencies.invoker.create_execution_state(queue_id=queue_id, graph=graph)
# return session return session
# @session_router.get( @session_router.get(
# "/", "/",
# operation_id="list_sessions", operation_id="list_sessions",
# responses={200: {"model": PaginatedResults[GraphExecutionState]}}, responses={200: {"model": PaginatedResults[GraphExecutionState]}},
# deprecated=True, deprecated=True,
# ) )
# async def list_sessions( async def list_sessions(
# page: int = Query(default=0, description="The page of results to get"), page: int = Query(default=0, description="The page of results to get"),
# per_page: int = Query(default=10, description="The number of results per page"), per_page: int = Query(default=10, description="The number of results per page"),
# query: str = Query(default="", description="The query string to search for"), query: str = Query(default="", description="The query string to search for"),
# ) -> PaginatedResults[GraphExecutionState]: ) -> PaginatedResults[GraphExecutionState]:
# """Gets a list of sessions, optionally searching""" """Gets a list of sessions, optionally searching"""
# if query == "": if query == "":
# result = ApiDependencies.invoker.services.graph_execution_manager.list(page, per_page) result = ApiDependencies.invoker.services.graph_execution_manager.list(page, per_page)
# else: else:
# result = ApiDependencies.invoker.services.graph_execution_manager.search(query, page, per_page) result = ApiDependencies.invoker.services.graph_execution_manager.search(query, page, per_page)
# return result return result
@session_router.get( @session_router.get(
@ -54,6 +60,7 @@ session_router = APIRouter(prefix="/v1/sessions", tags=["sessions"])
200: {"model": GraphExecutionState}, 200: {"model": GraphExecutionState},
404: {"description": "Session not found"}, 404: {"description": "Session not found"},
}, },
deprecated=True,
) )
async def get_session( async def get_session(
session_id: str = Path(description="The id of the session to get"), session_id: str = Path(description="The id of the session to get"),
@ -66,211 +73,211 @@ async def get_session(
return session return session
# @session_router.post( @session_router.post(
# "/{session_id}/nodes", "/{session_id}/nodes",
# operation_id="add_node", operation_id="add_node",
# responses={ responses={
# 200: {"model": str}, 200: {"model": str},
# 400: {"description": "Invalid node or link"}, 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"}, 404: {"description": "Session not found"},
# }, },
# deprecated=True, deprecated=True,
# ) )
# async def add_node( async def add_node(
# session_id: str = Path(description="The id of the session"), session_id: str = Path(description="The id of the session"),
# node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
# description="The node to add" description="The node to add"
# ), ),
# ) -> str: ) -> str:
# """Adds a node to the graph""" """Adds a node to the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None: if session is None:
# raise HTTPException(status_code=404) raise HTTPException(status_code=404)
# try: try:
# session.add_node(node) session.add_node(node)
# ApiDependencies.invoker.services.graph_execution_manager.set( ApiDependencies.invoker.services.graph_execution_manager.set(
# session session
# ) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
# return session.id return session.id
# except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# except IndexError: except IndexError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# @session_router.put( @session_router.put(
# "/{session_id}/nodes/{node_path}", "/{session_id}/nodes/{node_path}",
# operation_id="update_node", operation_id="update_node",
# responses={ responses={
# 200: {"model": GraphExecutionState}, 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"}, 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"}, 404: {"description": "Session not found"},
# }, },
# deprecated=True, deprecated=True,
# ) )
# async def update_node( async def update_node(
# session_id: str = Path(description="The id of the session"), session_id: str = Path(description="The id of the session"),
# node_path: str = Path(description="The path to the node in the graph"), node_path: str = Path(description="The path to the node in the graph"),
# node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore node: Annotated[Union[BaseInvocation.get_invocations()], Field(discriminator="type")] = Body( # type: ignore
# description="The new node" description="The new node"
# ), ),
# ) -> GraphExecutionState: ) -> GraphExecutionState:
# """Updates a node in the graph and removes all linked edges""" """Updates a node in the graph and removes all linked edges"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None: if session is None:
# raise HTTPException(status_code=404) raise HTTPException(status_code=404)
# try: try:
# session.update_node(node_path, node) session.update_node(node_path, node)
# ApiDependencies.invoker.services.graph_execution_manager.set( ApiDependencies.invoker.services.graph_execution_manager.set(
# session session
# ) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
# return session return session
# except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# except IndexError: except IndexError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# @session_router.delete( @session_router.delete(
# "/{session_id}/nodes/{node_path}", "/{session_id}/nodes/{node_path}",
# operation_id="delete_node", operation_id="delete_node",
# responses={ responses={
# 200: {"model": GraphExecutionState}, 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"}, 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"}, 404: {"description": "Session not found"},
# }, },
# deprecated=True, deprecated=True,
# ) )
# async def delete_node( async def delete_node(
# session_id: str = Path(description="The id of the session"), session_id: str = Path(description="The id of the session"),
# node_path: str = Path(description="The path to the node to delete"), node_path: str = Path(description="The path to the node to delete"),
# ) -> GraphExecutionState: ) -> GraphExecutionState:
# """Deletes a node in the graph and removes all linked edges""" """Deletes a node in the graph and removes all linked edges"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None: if session is None:
# raise HTTPException(status_code=404) raise HTTPException(status_code=404)
# try: try:
# session.delete_node(node_path) session.delete_node(node_path)
# ApiDependencies.invoker.services.graph_execution_manager.set( ApiDependencies.invoker.services.graph_execution_manager.set(
# session session
# ) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
# return session return session
# except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# except IndexError: except IndexError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# @session_router.post( @session_router.post(
# "/{session_id}/edges", "/{session_id}/edges",
# operation_id="add_edge", operation_id="add_edge",
# responses={ responses={
# 200: {"model": GraphExecutionState}, 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"}, 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"}, 404: {"description": "Session not found"},
# }, },
# deprecated=True, deprecated=True,
# ) )
# async def add_edge( async def add_edge(
# session_id: str = Path(description="The id of the session"), session_id: str = Path(description="The id of the session"),
# edge: Edge = Body(description="The edge to add"), edge: Edge = Body(description="The edge to add"),
# ) -> GraphExecutionState: ) -> GraphExecutionState:
# """Adds an edge to the graph""" """Adds an edge to the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None: if session is None:
# raise HTTPException(status_code=404) raise HTTPException(status_code=404)
# try: try:
# session.add_edge(edge) session.add_edge(edge)
# ApiDependencies.invoker.services.graph_execution_manager.set( ApiDependencies.invoker.services.graph_execution_manager.set(
# session session
# ) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
# return session return session
# except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# except IndexError: except IndexError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# # TODO: the edge being in the path here is really ugly, find a better solution # TODO: the edge being in the path here is really ugly, find a better solution
# @session_router.delete( @session_router.delete(
# "/{session_id}/edges/{from_node_id}/{from_field}/{to_node_id}/{to_field}", "/{session_id}/edges/{from_node_id}/{from_field}/{to_node_id}/{to_field}",
# operation_id="delete_edge", operation_id="delete_edge",
# responses={ responses={
# 200: {"model": GraphExecutionState}, 200: {"model": GraphExecutionState},
# 400: {"description": "Invalid node or link"}, 400: {"description": "Invalid node or link"},
# 404: {"description": "Session not found"}, 404: {"description": "Session not found"},
# }, },
# deprecated=True, deprecated=True,
# ) )
# async def delete_edge( async def delete_edge(
# session_id: str = Path(description="The id of the session"), session_id: str = Path(description="The id of the session"),
# from_node_id: str = Path(description="The id of the node the edge is coming from"), from_node_id: str = Path(description="The id of the node the edge is coming from"),
# from_field: str = Path(description="The field of the node the edge is coming from"), from_field: str = Path(description="The field of the node the edge is coming from"),
# to_node_id: str = Path(description="The id of the node the edge is going to"), to_node_id: str = Path(description="The id of the node the edge is going to"),
# to_field: str = Path(description="The field of the node the edge is going to"), to_field: str = Path(description="The field of the node the edge is going to"),
# ) -> GraphExecutionState: ) -> GraphExecutionState:
# """Deletes an edge from the graph""" """Deletes an edge from the graph"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None: if session is None:
# raise HTTPException(status_code=404) raise HTTPException(status_code=404)
# try: try:
# edge = Edge( edge = Edge(
# source=EdgeConnection(node_id=from_node_id, field=from_field), source=EdgeConnection(node_id=from_node_id, field=from_field),
# destination=EdgeConnection(node_id=to_node_id, field=to_field), destination=EdgeConnection(node_id=to_node_id, field=to_field),
# ) )
# session.delete_edge(edge) session.delete_edge(edge)
# ApiDependencies.invoker.services.graph_execution_manager.set( ApiDependencies.invoker.services.graph_execution_manager.set(
# session session
# ) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
# return session return session
# except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# except IndexError: except IndexError:
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# @session_router.put( @session_router.put(
# "/{session_id}/invoke", "/{session_id}/invoke",
# operation_id="invoke_session", operation_id="invoke_session",
# responses={ responses={
# 200: {"model": None}, 200: {"model": None},
# 202: {"description": "The invocation is queued"}, 202: {"description": "The invocation is queued"},
# 400: {"description": "The session has no invocations ready to invoke"}, 400: {"description": "The session has no invocations ready to invoke"},
# 404: {"description": "Session not found"}, 404: {"description": "Session not found"},
# }, },
# deprecated=True, deprecated=True,
# ) )
# async def invoke_session( async def invoke_session(
# queue_id: str = Query(description="The id of the queue to associate the session with"), queue_id: str = Query(description="The id of the queue to associate the session with"),
# session_id: str = Path(description="The id of the session to invoke"), session_id: str = Path(description="The id of the session to invoke"),
# all: bool = Query(default=False, description="Whether or not to invoke all remaining invocations"), all: bool = Query(default=False, description="Whether or not to invoke all remaining invocations"),
# ) -> Response: ) -> Response:
# """Invokes a session""" """Invokes a session"""
# session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
# if session is None: if session is None:
# raise HTTPException(status_code=404) raise HTTPException(status_code=404)
# if session.is_complete(): if session.is_complete():
# raise HTTPException(status_code=400) raise HTTPException(status_code=400)
# ApiDependencies.invoker.invoke(queue_id, session, invoke_all=all) ApiDependencies.invoker.invoke(queue_id, session, invoke_all=all)
# return Response(status_code=202) return Response(status_code=202)
# @session_router.delete( @session_router.delete(
# "/{session_id}/invoke", "/{session_id}/invoke",
# operation_id="cancel_session_invoke", operation_id="cancel_session_invoke",
# responses={202: {"description": "The invocation is canceled"}}, responses={202: {"description": "The invocation is canceled"}},
# deprecated=True, deprecated=True,
# ) )
# async def cancel_session_invoke( async def cancel_session_invoke(
# session_id: str = Path(description="The id of the session to cancel"), session_id: str = Path(description="The id of the session to cancel"),
# ) -> Response: ) -> Response:
# """Invokes a session""" """Invokes a session"""
# ApiDependencies.invoker.cancel(session_id) ApiDependencies.invoker.cancel(session_id)
# return Response(status_code=202) return Response(status_code=202)

View File

@ -1,4 +1,4 @@
from typing import Optional, Union from typing import Optional
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from fastapi import Body from fastapi import Body
@ -27,7 +27,6 @@ async def parse_dynamicprompts(
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"), combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
) -> DynamicPromptsResponse: ) -> DynamicPromptsResponse:
"""Creates a batch process""" """Creates a batch process"""
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
try: try:
error: Optional[str] = None error: Optional[str] = None
if combinatorial: if combinatorial:

View File

@ -1,20 +0,0 @@
from fastapi import APIRouter, Path
from invokeai.app.api.dependencies import ApiDependencies
from invokeai.app.invocations.baseinvocation import WorkflowField
workflows_router = APIRouter(prefix="/v1/workflows", tags=["workflows"])
@workflows_router.get(
"/i/{workflow_id}",
operation_id="get_workflow",
responses={
200: {"model": WorkflowField},
},
)
async def get_workflow(
workflow_id: str = Path(description="The workflow to get"),
) -> WorkflowField:
"""Gets a workflow"""
return ApiDependencies.invoker.services.workflow_records.get(workflow_id)

View File

@ -5,7 +5,7 @@ from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event from fastapi_events.typing import Event
from socketio import ASGIApp, AsyncServer from socketio import ASGIApp, AsyncServer
from ..services.events.events_base import EventServiceBase from ..services.events import EventServiceBase
class SocketIO: class SocketIO:
@ -30,8 +30,8 @@ class SocketIO:
async def _handle_sub_queue(self, sid, data, *args, **kwargs): async def _handle_sub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data: if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"]) self.__sio.enter_room(sid, data["queue_id"])
async def _handle_unsub_queue(self, sid, data, *args, **kwargs): async def _handle_unsub_queue(self, sid, data, *args, **kwargs):
if "queue_id" in data: if "queue_id" in data:
await self.__sio.enter_room(sid, data["queue_id"]) self.__sio.enter_room(sid, data["queue_id"])

View File

@ -1,7 +1,3 @@
from typing import Any
from fastapi.responses import HTMLResponse
from .services.config import InvokeAIAppConfig from .services.config import InvokeAIAppConfig
# parse_args() must be called before any other imports. if it is not called first, consumers of the config # parse_args() must be called before any other imports. if it is not called first, consumers of the config
@ -17,20 +13,17 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from inspect import signature from inspect import signature
from pathlib import Path from pathlib import Path
import torch
import uvicorn import uvicorn
from fastapi import FastAPI from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
from fastapi.openapi.utils import get_openapi from fastapi.openapi.utils import get_openapi
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles from fastapi.staticfiles import StaticFiles
from fastapi_events.handlers.local import local_handler from fastapi_events.handlers.local import local_handler
from fastapi_events.middleware import EventHandlerASGIMiddleware from fastapi_events.middleware import EventHandlerASGIMiddleware
from pydantic.json_schema import models_json_schema from pydantic.schema import schema
from torch.backends.mps import is_available as is_mps_available
# for PyCharm:
# noinspection PyUnresolvedReferences # noinspection PyUnresolvedReferences
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import) import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
import invokeai.frontend.web as web_dir import invokeai.frontend.web as web_dir
@ -38,27 +31,19 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
from ..backend.util.logging import InvokeAILogger from ..backend.util.logging import InvokeAILogger
from .api.dependencies import ApiDependencies from .api.dependencies import ApiDependencies
from .api.routers import ( from .api.routers import app_info, board_images, boards, images, models, session_queue, sessions, utilities
app_info,
board_images,
boards,
images,
models,
session_queue,
sessions,
utilities,
workflows,
)
from .api.sockets import SocketIO from .api.sockets import SocketIO
from .invocations.baseinvocation import BaseInvocation, UIConfigBase, _InputField, _OutputField from .invocations.baseinvocation import BaseInvocation, UIConfigBase, _InputField, _OutputField
if is_mps_available(): if torch.backends.mps.is_available():
# noinspection PyUnresolvedReferences
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import) import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
app_config = InvokeAIAppConfig.get_config() app_config = InvokeAIAppConfig.get_config()
app_config.parse_args() app_config.parse_args()
logger = InvokeAILogger.get_logger(config=app_config) logger = InvokeAILogger.get_logger(config=app_config)
# fix for windows mimetypes registry entries being borked # fix for windows mimetypes registry entries being borked
# see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352 # see https://github.com/invoke-ai/InvokeAI/discussions/3684#discussioncomment-6391352
mimetypes.add_type("application/javascript", ".js") mimetypes.add_type("application/javascript", ".js")
@ -66,7 +51,7 @@ mimetypes.add_type("text/css", ".css")
# Create the app # Create the app
# TODO: create this all in a method so configuration/etc. can be passed in? # TODO: create this all in a method so configuration/etc. can be passed in?
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None, separate_input_output_schemas=False) app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None)
# Add event handler # Add event handler
event_handler_id: int = id(app) event_handler_id: int = id(app)
@ -78,45 +63,53 @@ app.add_middleware(
socket_io = SocketIO(app) socket_io = SocketIO(app)
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
app.add_middleware(GZipMiddleware, minimum_size=1000)
# Add startup event to load dependencies # Add startup event to load dependencies
@app.on_event("startup") @app.on_event("startup")
async def startup_event() -> None: async def startup_event():
app.add_middleware(
CORSMiddleware,
allow_origins=app_config.allow_origins,
allow_credentials=app_config.allow_credentials,
allow_methods=app_config.allow_methods,
allow_headers=app_config.allow_headers,
)
ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger) ApiDependencies.initialize(config=app_config, event_handler_id=event_handler_id, logger=logger)
# Shut down threads # Shut down threads
@app.on_event("shutdown") @app.on_event("shutdown")
async def shutdown_event() -> None: async def shutdown_event():
ApiDependencies.shutdown() ApiDependencies.shutdown()
# Include all routers # Include all routers
# TODO: REMOVE
# app.include_router(
# invocation.invocation_router,
# prefix = '/api')
app.include_router(sessions.session_router, prefix="/api") app.include_router(sessions.session_router, prefix="/api")
app.include_router(utilities.utilities_router, prefix="/api") app.include_router(utilities.utilities_router, prefix="/api")
app.include_router(models.models_router, prefix="/api") app.include_router(models.models_router, prefix="/api")
app.include_router(images.images_router, prefix="/api") app.include_router(images.images_router, prefix="/api")
app.include_router(boards.boards_router, prefix="/api") app.include_router(boards.boards_router, prefix="/api")
app.include_router(board_images.board_images_router, prefix="/api") app.include_router(board_images.board_images_router, prefix="/api")
app.include_router(app_info.app_router, prefix="/api") app.include_router(app_info.app_router, prefix="/api")
app.include_router(session_queue.session_queue_router, prefix="/api") app.include_router(session_queue.session_queue_router, prefix="/api")
app.include_router(workflows.workflows_router, prefix="/api")
# Build a custom OpenAPI to include all outputs # Build a custom OpenAPI to include all outputs
# TODO: can outputs be included on metadata of invocation schemas somehow? # TODO: can outputs be included on metadata of invocation schemas somehow?
def custom_openapi() -> dict[str, Any]: def custom_openapi():
if app.openapi_schema: if app.openapi_schema:
return app.openapi_schema return app.openapi_schema
openapi_schema = get_openapi( openapi_schema = get_openapi(
@ -124,7 +117,6 @@ def custom_openapi() -> dict[str, Any]:
description="An API for invoking AI image operations", description="An API for invoking AI image operations",
version="1.0.0", version="1.0.0",
routes=app.routes, routes=app.routes,
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
) )
# Add all outputs # Add all outputs
@ -135,34 +127,31 @@ def custom_openapi() -> dict[str, Any]:
output_type = signature(invoker.invoke).return_annotation output_type = signature(invoker.invoke).return_annotation
output_types.add(output_type) output_types.add(output_type)
output_schemas = models_json_schema( output_schemas = schema(output_types, ref_prefix="#/components/schemas/")
models=[(o, "serialization") for o in output_types], ref_template="#/components/schemas/{model}" for schema_key, output_schema in output_schemas["definitions"].items():
) output_schema["class"] = "output"
for schema_key, output_schema in output_schemas[1]["$defs"].items(): openapi_schema["components"]["schemas"][schema_key] = output_schema
# TODO: note that we assume the schema_key here is the TYPE.__name__ # TODO: note that we assume the schema_key here is the TYPE.__name__
# This could break in some cases, figure out a better way to do it # This could break in some cases, figure out a better way to do it
output_type_titles[schema_key] = output_schema["title"] output_type_titles[schema_key] = output_schema["title"]
# Add Node Editor UI helper schemas # Add Node Editor UI helper schemas
ui_config_schemas = models_json_schema( ui_config_schemas = schema([UIConfigBase, _InputField, _OutputField], ref_prefix="#/components/schemas/")
[(UIConfigBase, "serialization"), (_InputField, "serialization"), (_OutputField, "serialization")], for schema_key, ui_config_schema in ui_config_schemas["definitions"].items():
ref_template="#/components/schemas/{model}",
)
for schema_key, ui_config_schema in ui_config_schemas[1]["$defs"].items():
openapi_schema["components"]["schemas"][schema_key] = ui_config_schema openapi_schema["components"]["schemas"][schema_key] = ui_config_schema
# Add a reference to the output type to additionalProperties of the invoker schema # Add a reference to the output type to additionalProperties of the invoker schema
for invoker in all_invocations: for invoker in all_invocations:
invoker_name = invoker.__name__ invoker_name = invoker.__name__
output_type = signature(obj=invoker.invoke).return_annotation output_type = signature(invoker.invoke).return_annotation
output_type_title = output_type_titles[output_type.__name__] output_type_title = output_type_titles[output_type.__name__]
invoker_schema = openapi_schema["components"]["schemas"][f"{invoker_name}"] invoker_schema = openapi_schema["components"]["schemas"][invoker_name]
outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"} outputs_ref = {"$ref": f"#/components/schemas/{output_type_title}"}
invoker_schema["output"] = outputs_ref invoker_schema["output"] = outputs_ref
invoker_schema["class"] = "invocation" invoker_schema["class"] = "invocation"
openapi_schema["components"]["schemas"][f"{output_type_title}"]["class"] = "output"
from invokeai.backend.model_management.models import get_model_config_enums from invokeai.backend.model_manager.models import get_model_config_enums
for model_config_format_enum in set(get_model_config_enums()): for model_config_format_enum in set(get_model_config_enums()):
name = model_config_format_enum.__qualname__ name = model_config_format_enum.__qualname__
@ -171,6 +160,7 @@ def custom_openapi() -> dict[str, Any]:
# print(f"Config with name {name} already defined") # print(f"Config with name {name} already defined")
continue continue
# "BaseModelType":{"title":"BaseModelType","description":"An enumeration.","enum":["sd-1","sd-2"],"type":"string"}
openapi_schema["components"]["schemas"][name] = dict( openapi_schema["components"]["schemas"][name] = dict(
title=name, title=name,
description="An enumeration.", description="An enumeration.",
@ -182,45 +172,40 @@ def custom_openapi() -> dict[str, Any]:
return app.openapi_schema return app.openapi_schema
app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid assignment app.openapi = custom_openapi
# Override API doc favicons
app.mount("/static", StaticFiles(directory=Path(web_dir.__path__[0], "static/dream_web")), name="static")
@app.get("/docs", include_in_schema=False) @app.get("/docs", include_in_schema=False)
def overridden_swagger() -> HTMLResponse: def overridden_swagger():
return get_swagger_ui_html( return get_swagger_ui_html(
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string openapi_url=app.openapi_url,
title=app.title, title=app.title,
swagger_favicon_url="/static/docs/favicon.ico", swagger_favicon_url="/static/favicon.ico",
) )
@app.get("/redoc", include_in_schema=False) @app.get("/redoc", include_in_schema=False)
def overridden_redoc() -> HTMLResponse: def overridden_redoc():
return get_redoc_html( return get_redoc_html(
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string openapi_url=app.openapi_url,
title=app.title, title=app.title,
redoc_favicon_url="/static/docs/favicon.ico", redoc_favicon_url="/static/favicon.ico",
) )
web_root_path = Path(list(web_dir.__path__)[0]) # Must mount *after* the other routes else it borks em
app.mount("/", StaticFiles(directory=Path(web_dir.__path__[0], "dist"), html=True), name="ui")
# Cannot add headers to StaticFiles, so we must serve index.html with a custom route def invoke_api():
# Add cache-control: no-store header to prevent caching of index.html, which leads to broken UIs at release if app_config.version:
@app.get("/", include_in_schema=False, name="ui_root") print(f"InvokeAI version {__version__}")
def get_index() -> FileResponse: return
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
def find_port(port: int):
# # Must mount *after* the other routes else it borks em
app.mount("/static", StaticFiles(directory=Path(web_root_path, "static/")), name="static") # docs favicon is in here
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
def invoke_api() -> None:
def find_port(port: int) -> int:
"""Find a port not in use starting at given port""" """Find a port not in use starting at given port"""
# Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon! # Taken from https://waylonwalker.com/python-find-available-port/, thanks Waylon!
# https://github.com/WaylonWalker # https://github.com/WaylonWalker
@ -255,7 +240,7 @@ def invoke_api() -> None:
app=app, app=app,
host=app_config.host, host=app_config.host,
port=port, port=port,
loop="asyncio", loop=loop,
log_level=app_config.log_level, log_level=app_config.log_level,
) )
server = uvicorn.Server(config) server = uvicorn.Server(config)
@ -271,7 +256,4 @@ def invoke_api() -> None:
if __name__ == "__main__": if __name__ == "__main__":
if app_config.version: invoke_api()
print(f"InvokeAI version {__version__}")
else:
invoke_api()

View File

@ -0,0 +1,313 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import argparse
from abc import ABC, abstractmethod
from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
import matplotlib.pyplot as plt
import networkx as nx
from pydantic import BaseModel, Field
import invokeai.backend.util.logging as logger
from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField
from ..services.graph import Edge, GraphExecutionState, LibraryGraph
from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override=None):
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
)
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
help=field.field_info.description,
)
def add_parsers(
subparsers,
commands: list[type],
command_field: str = "type",
exclude_fields: list[str] = ["id", "type"],
add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None,
):
"""Adds parsers for each command to the subparsers"""
# Create subparsers for each command
for command in commands:
hints = get_type_hints(command)
cmd_name = get_args(hints[command_field])[0]
command_parser = subparsers.add_parser(cmd_name, help=command.__doc__)
if add_arguments is not None:
add_arguments(command_parser)
# Convert all fields to arguments
fields = command.__fields__ # type: ignore
for name, field in fields.items():
if name in exclude_fields:
continue
add_field_argument(command_parser, name, field)
def add_graph_parsers(
subparsers, graphs: list[LibraryGraph], add_arguments: Union[Callable[[argparse.ArgumentParser], None], None] = None
):
for graph in graphs:
command_parser = subparsers.add_parser(graph.name, help=graph.description)
if add_arguments is not None:
add_arguments(command_parser)
# Add arguments for inputs
for exposed_input in graph.exposed_inputs:
node = graph.graph.get_node(exposed_input.node_path)
field = node.__fields__[exposed_input.field]
default_override = getattr(node, exposed_input.field)
add_field_argument(command_parser, exposed_input.alias, field, default_override)
class CliContext:
invoker: Invoker
session: GraphExecutionState
parser: argparse.ArgumentParser
defaults: dict[str, Any]
graph_nodes: dict[str, str]
nodes_added: list[str]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker
self.session = session
self.parser = parser
self.defaults = dict()
self.graph_nodes = dict()
self.nodes_added = list()
def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session
def reset(self):
self.session = self.invoker.create_execution_state()
self.graph_nodes = dict()
self.nodes_added = list()
# Leave defaults unchanged
def add_node(self, node: BaseInvocation):
self.get_session()
self.session.graph.add_node(node)
self.nodes_added.append(node.id)
self.invoker.services.graph_execution_manager.set(self.session)
def add_edge(self, edge: Edge):
self.get_session()
self.session.add_edge(edge)
self.invoker.services.graph_execution_manager.set(self.session)
class ExitCli(Exception):
"""Exception to exit the CLI"""
pass
class BaseCommand(ABC, BaseModel):
"""A CLI command"""
# All commands must include a type name like this:
# type: Literal['your_command_name'] = 'your_command_name'
@classmethod
def get_all_subclasses(cls):
subclasses = []
toprocess = [cls]
while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
return subclasses
@classmethod
def get_commands(cls):
return tuple(BaseCommand.get_all_subclasses())
@classmethod
def get_commands_map(cls):
# Get the type strings out of the literals and into a dictionary
return dict(map(lambda t: (get_args(get_type_hints(t)["type"])[0], t), BaseCommand.get_all_subclasses()))
@abstractmethod
def run(self, context: CliContext) -> None:
"""Run the command. Raise ExitCli to exit."""
pass
class ExitCommand(BaseCommand):
"""Exits the CLI"""
type: Literal["exit"] = "exit"
def run(self, context: CliContext) -> None:
raise ExitCli()
class HelpCommand(BaseCommand):
"""Shows help"""
type: Literal["help"] = "help"
def run(self, context: CliContext) -> None:
context.parser.print_help()
def get_graph_execution_history(
graph_execution_state: GraphExecutionState,
) -> Iterable[str]:
"""Gets the history of fully-executed invocations for a graph execution"""
return (n for n in reversed(graph_execution_state.executed_history) if n in graph_execution_state.graph.nodes)
def get_invocation_command(invocation) -> str:
fields = invocation.__fields__.items()
type_hints = get_type_hints(type(invocation))
command = [invocation.type]
for name, field in fields:
if name in ["id", "type"]:
continue
# TODO: add links
# Skip image fields when serializing command
type_hint = type_hints.get(name) or None
if type_hint is ImageField or ImageField in get_args(type_hint):
continue
field_value = getattr(invocation, name)
field_default = field.default
if field_value != field_default:
if type_hint is str or str in get_args(type_hint):
command.append(f'--{name} "{field_value}"')
else:
command.append(f"--{name} {field_value}")
return " ".join(command)
class HistoryCommand(BaseCommand):
"""Shows the invocation history"""
type: Literal["history"] = "history"
# Inputs
# fmt: off
count: int = Field(default=5, gt=0, description="The number of history entries to show")
# fmt: on
def run(self, context: CliContext) -> None:
history = list(get_graph_execution_history(context.get_session()))
for i in range(min(self.count, len(history))):
entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id)
logger.info(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand):
"""Sets a default value for a field"""
type: Literal["default"] = "default"
# Inputs
# fmt: off
field: str = Field(description="The field to set the default for")
value: str = Field(description="The value to set the default to, or None to clear the default")
# fmt: on
def run(self, context: CliContext) -> None:
if self.value is None:
if self.field in context.defaults:
del context.defaults[self.field]
else:
context.defaults[self.field] = self.value
class DrawGraphCommand(BaseCommand):
"""Debugs a graph"""
type: Literal["draw_graph"] = "draw_graph"
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class DrawExecutionGraphCommand(BaseCommand):
"""Debugs an execution graph"""
type: Literal["draw_xgraph"] = "draw_xgraph"
def run(self, context: CliContext) -> None:
session: GraphExecutionState = context.invoker.services.graph_execution_manager.get(context.session.id)
nxgraph = session.execution_graph.nx_graph_flat()
# Draw the networkx graph
plt.figure(figsize=(20, 20))
pos = nx.spectral_layout(nxgraph)
nx.draw_networkx_nodes(nxgraph, pos, node_size=1000)
nx.draw_networkx_edges(nxgraph, pos, width=2)
nx.draw_networkx_labels(nxgraph, pos, font_size=20, font_family="sans-serif")
plt.axis("off")
plt.show()
class SortedHelpFormatter(argparse.HelpFormatter):
def _iter_indented_subactions(self, action):
try:
get_subactions = action._get_subactions
except AttributeError:
pass
else:
self._indent()
if isinstance(action, argparse._SubParsersAction):
for subaction in sorted(get_subactions(), key=lambda x: x.dest):
yield subaction
else:
for subaction in get_subactions():
yield subaction
self._dedent()

View File

@ -0,0 +1,172 @@
"""
Readline helper functions for cli_app.py
You may import the global singleton `completer` to get access to the
completer object.
"""
import atexit
import readline
import shlex
from pathlib import Path
from typing import Dict, List, Literal, get_args, get_origin, get_type_hints
import invokeai.backend.util.logging as logger
from invokeai.backend.model_manager import ModelType
from ..invocations.baseinvocation import BaseInvocation
from ..services.invocation_services import InvocationServices
from ..services.model_record_service import ModelRecordServiceBase
from .commands import BaseCommand
# singleton object, class variable
completer = None
class Completer(object):
def __init__(self, model_record_store: ModelRecordServiceBase):
self.commands = self.get_commands()
self.matches = None
self.linebuffer = None
self.store = model_record_store
return
def complete(self, text, state):
"""
Complete commands and switches fromm the node CLI command line.
Switches are determined in a context-specific manner.
"""
buffer = readline.get_line_buffer()
if state == 0:
options = None
try:
current_command, current_switch = self.get_current_command(buffer)
options = self.get_command_options(current_command, current_switch)
except IndexError:
pass
options = options or list(self.parse_commands().keys())
if not text: # first time
self.matches = options
else:
self.matches = [s for s in options if s and s.startswith(text)]
try:
match = self.matches[state]
except IndexError:
match = None
return match
@classmethod
def get_commands(self) -> List[object]:
"""
Return a list of all the client commands and invocations.
"""
return BaseCommand.get_commands() + BaseInvocation.get_invocations()
def get_current_command(self, buffer: str) -> tuple[str, str]:
"""
Parse the readline buffer to find the most recent command and its switch.
"""
if len(buffer) == 0:
return None, None
tokens = shlex.split(buffer)
command = None
switch = None
for t in tokens:
if t[0].isalpha():
if switch is None:
command = t
else:
switch = t
# don't try to autocomplete switches that are already complete
if switch and buffer.endswith(" "):
switch = None
return command or "", switch or ""
def parse_commands(self) -> Dict[str, List[str]]:
"""
Return a dict in which the keys are the command name
and the values are the parameters the command takes.
"""
result = dict()
for command in self.commands:
hints = get_type_hints(command)
name = get_args(hints["type"])[0]
result.update({name: hints})
return result
def get_command_options(self, command: str, switch: str) -> List[str]:
"""
Return all the parameters that can be passed to the command as
command-line switches. Returns None if the command is unrecognized.
"""
parsed_commands = self.parse_commands()
if command not in parsed_commands:
return None
# handle switches in the format "-foo=bar"
argument = None
if switch and "=" in switch:
switch, argument = switch.split("=")
parameter = switch.strip("-")
if parameter in parsed_commands[command]:
if argument is None:
return self.get_parameter_options(parameter, parsed_commands[command][parameter])
else:
return [
f"--{parameter}={x}"
for x in self.get_parameter_options(parameter, parsed_commands[command][parameter])
]
else:
return [f"--{x}" for x in parsed_commands[command].keys()]
def get_parameter_options(self, parameter: str, typehint) -> List[str]:
"""
Given a parameter type (such as Literal), offers autocompletions.
"""
if get_origin(typehint) == Literal:
return get_args(typehint)
if parameter == "model":
return [x.name for x in self.store.model_info_by_name(model_type=ModelType.Main)]
def _pre_input_hook(self):
if self.linebuffer:
readline.insert_text(self.linebuffer)
readline.redisplay()
self.linebuffer = None
def set_autocompleter(services: InvocationServices) -> Completer:
global completer
if completer:
return completer
completer = Completer(services.model_record_store)
readline.set_completer(completer.complete)
try:
readline.set_auto_history(True)
except AttributeError:
# pyreadline3 does not have a set_auto_history() method
pass
readline.set_pre_input_hook(completer._pre_input_hook)
readline.set_completer_delims(" ")
readline.parse_and_bind("tab: complete")
readline.parse_and_bind("set print-completions-horizontally off")
readline.parse_and_bind("set page-completions on")
readline.parse_and_bind("set skip-completed-text on")
readline.parse_and_bind("set show-all-if-ambiguous on")
histfile = Path(services.configuration.root_dir / ".invoke_history")
try:
readline.read_history_file(histfile)
readline.set_history_length(1000)
except FileNotFoundError:
pass
except OSError: # file likely corrupted
newname = f"{histfile}.old"
logger.error(f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}")
histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile)

502
invokeai/app/cli_app.py Normal file
View File

@ -0,0 +1,502 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from invokeai.app.services.invocation_cache.invocation_cache_memory import MemoryInvocationCache
from .services.config import InvokeAIAppConfig
# parse_args() must be called before any other imports. if it is not called first, consumers of the config
# which are imported/used before parse_args() is called will get the default config values instead of the
# values from the command line or config file.
if True: # hack to make flake8 happy with imports coming after setting up the config
import argparse
import re
import shlex
import sqlite3
import sys
import time
from typing import Optional, Union, get_type_hints
import torch
from pydantic import BaseModel, ValidationError
from pydantic.fields import Field
import invokeai.backend.util.hotfixes # noqa: F401 (monkeypatching on import)
from invokeai.app.services.board_image_record_storage import SqliteBoardImageRecordStorage
from invokeai.app.services.board_images import BoardImagesService, BoardImagesServiceDependencies
from invokeai.app.services.board_record_storage import SqliteBoardRecordStorage
from invokeai.app.services.boards import BoardService, BoardServiceDependencies
from invokeai.app.services.image_record_storage import SqliteImageRecordStorage
from invokeai.app.services.images import ImageService, ImageServiceDependencies
from invokeai.app.services.invocation_stats import InvocationStatsService
from invokeai.app.services.resource_name import SimpleNameService
from invokeai.app.services.session_processor.session_processor_default import DefaultSessionProcessor
from invokeai.app.services.session_queue.session_queue_sqlite import SqliteSessionQueue
from invokeai.app.services.urls import LocalUrlService
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
from .cli.commands import BaseCommand, CliContext, ExitCli, SortedHelpFormatter, add_graph_parsers, add_parsers
from .cli.completer import set_autocompleter
from .invocations.baseinvocation import BaseInvocation
from .services.default_graphs import create_system_graphs, default_text_to_image_graph_id
from .services.download_manager import DownloadQueueService
from .services.events import EventServiceBase
from .services.graph import (
Edge,
EdgeConnection,
GraphExecutionState,
GraphInvocation,
LibraryGraph,
are_connection_types_compatible,
)
from .services.image_file_storage import DiskImageFileStorage
from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices
from .services.invoker import Invoker
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from .services.model_install_service import ModelInstallService
from .services.model_loader_service import ModelLoadService
from .services.model_record_service import ModelRecordServiceBase
from .services.processor import DefaultInvocationProcessor
from .services.sqlite import SqliteItemStorage
from .services.thread import lock
if torch.backends.mps.is_available():
import invokeai.backend.util.mps_fixes # noqa: F401 (monkeypatching on import)
config = InvokeAIAppConfig.get_config()
config.parse_args()
logger = InvokeAILogger().get_logger(config=config)
class CliCommand(BaseModel):
command: Union[BaseCommand.get_commands() + BaseInvocation.get_invocations()] = Field(discriminator="type") # type: ignore
class InvalidArgs(Exception):
pass
def add_invocation_args(command_parser):
# Add linking capability
command_parser.add_argument(
"--link",
"-l",
action="append",
nargs=3,
help="A link in the format 'source_node source_field dest_field'. source_node can be relative to history (e.g. -1)",
)
command_parser.add_argument(
"--link_node",
"-ln",
action="append",
help="A link from all fields in the specified node. Node can be relative to history (e.g. -1)",
)
def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
# Create invocation parser
parser = argparse.ArgumentParser(formatter_class=SortedHelpFormatter)
def exit(*args, **kwargs):
raise InvalidArgs
parser.exit = exit
subparsers = parser.add_subparsers(dest="type")
# Create subparsers for each invocation
invocations = BaseInvocation.get_all_subclasses()
add_parsers(subparsers, invocations, add_arguments=add_invocation_args)
# Create subparsers for each command
commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"])
# Create subparsers for exposed CLI graphs
# TODO: add a way to identify these graphs
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
return parser
class NodeField:
alias: str
node_path: str
field: str
field_type: type
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
self.alias = alias
self.node_path = node_path
self.field = field
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str, NodeField]:
return {k: NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(
alias=exposed_input.alias,
node_path=f"{node_id}.{exposed_input.node_path}",
field=exposed_input.field,
field_type=get_type_hints(node_type)[exposed_input.field],
)
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(
alias=exposed_output.alias,
node_path=f"{node_id}.{exposed_output.node_path}",
field=exposed_output.field,
field_type=get_type_hints(node_output_type)[exposed_output.field],
)
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the inputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the outputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges(a: BaseInvocation, b: BaseInvocation, context: CliContext) -> list[Edge]:
"""Generates all possible edges between two invocations"""
afields = get_node_outputs(a, context)
bfields = get_node_inputs(b, context)
matching_fields = set(afields.keys()).intersection(bfields.keys())
# Remove invalid fields
invalid_fields = set(["type", "id"])
matching_fields = matching_fields.difference(invalid_fields)
# Validate types
matching_fields = [
f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)
]
edges = [
Edge(
source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field),
)
for alias in matching_fields
]
return edges
class SessionError(Exception):
"""Raised when a session error has occurred"""
pass
def invoke_all(context: CliContext):
"""Runs all invocations in the specified session"""
context.invoker.invoke(context.session, invoke_all=True)
while not context.get_session().is_complete():
# Wait some time
time.sleep(0.1)
# Print any errors
if context.session.has_error():
for n in context.session.errors:
context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
)
raise SessionError()
def invoke_cli():
if config.version:
print(f"InvokeAI version {__version__}")
return
logger.info(f"InvokeAI version {__version__}")
# get the optional list of invocations to execute on the command line
parser = config.get_parser()
parser.add_argument("commands", nargs="*")
invocation_commands = parser.parse_args().commands
# get the optional file to read commands from.
# Simplest is to use it for STDIN
if infile := config.from_file:
sys.stdin = open(infile, "r")
events = EventServiceBase()
output_folder = config.output_path
# TODO: build a file/path manager?
if config.use_memory_db:
db_location = ":memory:"
else:
db_location = config.db_path
db_location.parent.mkdir(parents=True, exist_ok=True)
db_conn = sqlite3.connect(db_location, check_same_thread=False) # TODO: figure out a better threading solution
logger.info(f'InvokeAI database location is "{db_location}"')
download_queue = DownloadQueueService(event_bus=events)
model_record_store = ModelRecordServiceBase.open(config, conn=db_conn, lock=None)
model_loader = ModelLoadService(config, model_record_store)
model_installer = ModelInstallService(config, queue=download_queue, store=model_record_store, event_bus=events)
graph_execution_manager = SqliteItemStorage[GraphExecutionState](
conn=db_conn, table_name="graph_executions", lock=lock
)
urls = LocalUrlService()
image_record_storage = SqliteImageRecordStorage(conn=db_conn, lock=lock)
image_file_storage = DiskImageFileStorage(f"{output_folder}/images")
names = SimpleNameService()
board_record_storage = SqliteBoardRecordStorage(conn=db_conn, lock=lock)
board_image_record_storage = SqliteBoardImageRecordStorage(conn=db_conn, lock=lock)
boards = BoardService(
services=BoardServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
board_images = BoardImagesService(
services=BoardImagesServiceDependencies(
board_image_record_storage=board_image_record_storage,
board_record_storage=board_record_storage,
image_record_storage=image_record_storage,
url=urls,
logger=logger,
)
)
images = ImageService(
services=ImageServiceDependencies(
board_image_record_storage=board_image_record_storage,
image_record_storage=image_record_storage,
image_file_storage=image_file_storage,
url=urls,
logger=logger,
names=names,
graph_execution_manager=graph_execution_manager,
)
)
services = InvocationServices(
events=events,
latents=ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents")),
images=images,
boards=boards,
board_images=board_images,
queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](conn=db_conn, table_name="graphs", lock=lock),
graph_execution_manager=graph_execution_manager,
processor=DefaultInvocationProcessor(),
performance_statistics=InvocationStatsService(graph_execution_manager),
logger=logger,
download_queue=download_queue,
model_record_store=model_record_store,
model_loader=model_loader,
model_installer=model_installer,
configuration=config,
invocation_cache=MemoryInvocationCache(max_cache_size=config.node_cache_size),
session_queue=SqliteSessionQueue(conn=db_conn, lock=lock),
session_processor=DefaultSessionProcessor(),
)
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
set_autocompleter(services)
invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser(services)
re_negid = re.compile("^-[0-9]+$")
# Uncomment to print out previous sessions at startup
# print(services.session_manager.list())
context = CliContext(invoker, session, parser)
set_autocompleter(services)
command_line_args_exist = len(invocation_commands) > 0
done = False
while not done:
try:
if command_line_args_exist:
cmd_input = invocation_commands.pop(0)
done = len(invocation_commands) == 0
else:
cmd_input = input("invoke> ")
except (KeyboardInterrupt, EOFError):
# Ctrl-c exits
break
try:
# Refresh the state of the session
# history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
# Split the command for piping
cmds = cmd_input.split("|")
start_id = len(context.nodes_added)
current_id = start_id
new_invocations = list()
for cmd in cmds:
if cmd is None or cmd.strip() == "":
raise InvalidArgs("Empty command")
# Parse args to create invocation
args = vars(context.parser.parse_args(shlex.split(cmd.strip())))
# Override defaults
for field_name, field_default in context.defaults.items():
if field_name in args:
args[field_name] = field_default
# Parse invocation
command: CliCommand = None # type:ignore
system_graph: Optional[LibraryGraph] = None
if args["type"] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args["type"], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command=invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
args["id"] = current_id
command = CliCommand(command=args)
if command is None:
continue
# Run any CLI commands immediately
if isinstance(command.command, BaseCommand):
# Invoke all current nodes to preserve operation order
invoke_all(context)
# Run the command
command.command.run(context)
continue
# TODO: handle linking with library graphs
# Pipe previous command output (if there was a previous command)
edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id:
from_id = history[0] if current_id == start_id else str(current_id - 1)
from_node = (
next(filter(lambda n: n[0].id == from_id, new_invocations))[0]
if current_id != start_id
else context.session.graph.get_node(from_id)
)
matching_edges = generate_matching_edges(from_node, command.command, context)
edges.extend(matching_edges)
# Parse provided links
if "link_node" in args and args["link_node"]:
for link in args["link_node"]:
node_id = link
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges(link_node, command.command, context)
matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations]
edges.extend(matching_edges)
if "link" in args and args["link"]:
for link in args["link"]:
edges = [
e
for e in edges
if e.destination.node_id != command.command.id or e.destination.field != link[2]
]
node_id = link[0]
if re_negid.match(node_id):
node_id = str(current_id + int(node_id))
# TODO: handle missing input/output
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
node_input = get_node_inputs(command.command, context)[link[2]]
edges.append(
Edge(
source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field),
)
)
new_invocations.append((command.command, edges))
current_id = current_id + 1
# Add the node to the session
context.add_node(command.command)
for edge in edges:
print(edge)
context.add_edge(edge)
# Execute all remaining nodes
invoke_all(context)
except InvalidArgs:
invoker.services.logger.warning('Invalid command, use "help" to list commands')
continue
except ValidationError:
invoker.services.logger.warning('Invalid command arguments, run "<command> --help" for summary')
except SessionError:
# Start a new session
invoker.services.logger.warning("Session error: creating a new session")
context.reset()
except ExitCli:
break
except SystemExit:
continue
invoker.stop()
if __name__ == "__main__":
invoke_cli()

View File

@ -1,28 +1,8 @@
import shutil import os
import sys
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from invokeai.app.services.config.config_default import InvokeAIAppConfig __all__ = []
custom_nodes_path = Path(InvokeAIAppConfig.get_config().custom_nodes_path.absolute()) dirname = os.path.dirname(os.path.abspath(__file__))
custom_nodes_path.mkdir(parents=True, exist_ok=True) for f in os.listdir(dirname):
if f != "__init__.py" and os.path.isfile("%s/%s" % (dirname, f)) and f[-3:] == ".py":
custom_nodes_init_path = str(custom_nodes_path / "__init__.py") __all__.append(f[:-3])
custom_nodes_readme_path = str(custom_nodes_path / "README.md")
# copy our custom nodes __init__.py to the custom nodes directory
shutil.copy(Path(__file__).parent / "custom_nodes/init.py", custom_nodes_init_path)
shutil.copy(Path(__file__).parent / "custom_nodes/README.md", custom_nodes_readme_path)
# Import custom nodes, see https://docs.python.org/3/library/importlib.html#importing-programmatically
spec = spec_from_file_location("custom_nodes", custom_nodes_init_path)
if spec is None or spec.loader is None:
raise RuntimeError(f"Could not load custom nodes from {custom_nodes_init_path}")
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
# add core nodes to __all__
python_files = filter(lambda f: not f.name.startswith("_"), Path(__file__).parent.glob("*.py"))
__all__ = list(f.stem for f in python_files) # type: ignore

View File

@ -2,21 +2,33 @@
from __future__ import annotations from __future__ import annotations
import inspect import json
import re import re
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import Enum from enum import Enum
from inspect import signature from inspect import signature
from types import UnionType from typing import (
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union TYPE_CHECKING,
AbstractSet,
Any,
Callable,
ClassVar,
Literal,
Mapping,
Optional,
Type,
TypeVar,
Union,
get_args,
get_type_hints,
)
import semver import semver
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, create_model from pydantic import BaseModel, Field, validator
from pydantic.fields import FieldInfo, _Unset from pydantic.fields import ModelField, Undefined
from pydantic_core import PydanticUndefined from pydantic.typing import NoArgAnyCallable
from invokeai.app.services.config.config_default import InvokeAIAppConfig from invokeai.app.services.config.invokeai_config import InvokeAIAppConfig
from invokeai.app.util.misc import uuid_string
if TYPE_CHECKING: if TYPE_CHECKING:
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices
@ -26,10 +38,6 @@ class InvalidVersionError(ValueError):
pass pass
class InvalidFieldError(TypeError):
pass
class FieldDescriptions: class FieldDescriptions:
denoising_start = "When to start denoising, expressed a percentage of total steps" denoising_start = "When to start denoising, expressed a percentage of total steps"
denoising_end = "When to stop denoising, expressed a percentage of total steps" denoising_end = "When to stop denoising, expressed a percentage of total steps"
@ -64,12 +72,7 @@ class FieldDescriptions:
denoised_latents = "Denoised latents tensor" denoised_latents = "Denoised latents tensor"
latents = "Latents tensor" latents = "Latents tensor"
strength = "Strength of denoising (proportional to steps)" strength = "Strength of denoising (proportional to steps)"
metadata = "Optional metadata to be saved with the image" core_metadata = "Optional core metadata to be written to image"
metadata_collection = "Collection of Metadata"
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
metadata_item_label = "Label for this metadata item"
metadata_item_value = "The value for this metadata item (may be any type)"
workflow = "Optional workflow to be saved with the image"
interp_mode = "Interpolation mode" interp_mode = "Interpolation mode"
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)" torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
fp32 = "Whether or not to use full float32 precision" fp32 = "Whether or not to use full float32 precision"
@ -176,12 +179,8 @@ class UIType(str, Enum):
Scheduler = "Scheduler" Scheduler = "Scheduler"
WorkflowField = "WorkflowField" WorkflowField = "WorkflowField"
IsIntermediate = "IsIntermediate" IsIntermediate = "IsIntermediate"
MetadataField = "MetadataField"
BoardField = "BoardField" BoardField = "BoardField"
Any = "Any"
MetadataItem = "MetadataItem"
MetadataItemCollection = "MetadataItemCollection"
MetadataItemPolymorphic = "MetadataItemPolymorphic"
MetadataDict = "MetadataDict"
# endregion # endregion
@ -212,11 +211,6 @@ class _InputField(BaseModel):
ui_choice_labels: Optional[dict[str, str]] ui_choice_labels: Optional[dict[str, str]]
item_default: Optional[Any] item_default: Optional[Any]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
class _OutputField(BaseModel): class _OutputField(BaseModel):
""" """
@ -230,36 +224,34 @@ class _OutputField(BaseModel):
ui_type: Optional[UIType] ui_type: Optional[UIType]
ui_order: Optional[int] ui_order: Optional[int]
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
)
def get_type(klass: BaseModel) -> str:
"""Helper function to get an invocation or invocation output's type. This is the default value of the `type` field."""
return klass.model_fields["type"].default
def InputField( def InputField(
# copied from pydantic's Field *args: Any,
default: Any = _Unset, default: Any = Undefined,
default_factory: Callable[[], Any] | None = _Unset, default_factory: Optional[NoArgAnyCallable] = None,
title: str | None = _Unset, alias: Optional[str] = None,
description: str | None = _Unset, title: Optional[str] = None,
pattern: str | None = _Unset, description: Optional[str] = None,
strict: bool | None = _Unset, exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
gt: float | None = _Unset, include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
ge: float | None = _Unset, const: Optional[bool] = None,
lt: float | None = _Unset, gt: Optional[float] = None,
le: float | None = _Unset, ge: Optional[float] = None,
multiple_of: float | None = _Unset, lt: Optional[float] = None,
allow_inf_nan: bool | None = _Unset, le: Optional[float] = None,
max_digits: int | None = _Unset, multiple_of: Optional[float] = None,
decimal_places: int | None = _Unset, allow_inf_nan: Optional[bool] = None,
min_length: int | None = _Unset, max_digits: Optional[int] = None,
max_length: int | None = _Unset, decimal_places: Optional[int] = None,
# custom min_items: Optional[int] = None,
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
input: Input = Input.Any, input: Input = Input.Any,
ui_type: Optional[UIType] = None, ui_type: Optional[UIType] = None,
ui_component: Optional[UIComponent] = None, ui_component: Optional[UIComponent] = None,
@ -267,6 +259,7 @@ def InputField(
ui_order: Optional[int] = None, ui_order: Optional[int] = None,
ui_choice_labels: Optional[dict[str, str]] = None, ui_choice_labels: Optional[dict[str, str]] = None,
item_default: Optional[Any] = None, item_default: Optional[Any] = None,
**kwargs: Any,
) -> Any: ) -> Any:
""" """
Creates an input field for an invocation. Creates an input field for an invocation.
@ -296,27 +289,18 @@ def InputField(
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \ : param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
: param bool item_default: [None] Specifies the default item value, if this is a collection input. \ : param bool item_default: [None] Specifies the default item value, if this is a collection input. \
Ignored for non-collection fields. Ignored for non-collection fields..
""" """
return Field(
json_schema_extra_: dict[str, Any] = dict( *args,
input=input,
ui_type=ui_type,
ui_component=ui_component,
ui_hidden=ui_hidden,
ui_order=ui_order,
item_default=item_default,
ui_choice_labels=ui_choice_labels,
_field_kind="input",
)
field_args = dict(
default=default, default=default,
default_factory=default_factory, default_factory=default_factory,
alias=alias,
title=title, title=title,
description=description, description=description,
pattern=pattern, exclude=exclude,
strict=strict, include=include,
const=const,
gt=gt, gt=gt,
ge=ge, ge=ge,
lt=lt, lt=lt,
@ -325,92 +309,57 @@ def InputField(
allow_inf_nan=allow_inf_nan, allow_inf_nan=allow_inf_nan,
max_digits=max_digits, max_digits=max_digits,
decimal_places=decimal_places, decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length, min_length=min_length,
max_length=max_length, max_length=max_length,
) allow_mutation=allow_mutation,
regex=regex,
""" discriminator=discriminator,
Invocation definitions have their fields typed correctly for their `invoke()` functions. repr=repr,
This typing is often more specific than the actual invocation definition requires, because input=input,
fields may have values provided only by connections. ui_type=ui_type,
ui_component=ui_component,
For example, consider an ResizeImageInvocation with an `image: ImageField` field. ui_hidden=ui_hidden,
ui_order=ui_order,
`image` is required during the call to `invoke()`, but when the python class is instantiated, item_default=item_default,
the field may not be present. This is fine, because that image field will be provided by a ui_choice_labels=ui_choice_labels,
an ancestor node that outputs the image. **kwargs,
So we'd like to type that `image` field as `Optional[ImageField]`. If we do that, however, then
we need to handle a lot of extra logic in the `invoke()` function to check if the field has a
value or not. This is very tedious.
Ideally, the invocation definition would be able to specify that the field is required during
invocation, but optional during instantiation. So the field would be typed as `image: ImageField`,
but when calling the `invoke()` function, we raise an error if the field is not present.
To do this, we need to do a bit of fanagling to make the pydantic field optional, and then do
extra validation when calling `invoke()`.
There is some additional logic here to cleaning create the pydantic field via the wrapper.
"""
# Filter out field args not provided
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
if (default is not PydanticUndefined) and (default_factory is not PydanticUndefined):
raise ValueError("Cannot specify both default and default_factory")
# because we are manually making fields optional, we need to store the original required bool for reference later
if default is PydanticUndefined and default_factory is PydanticUndefined:
json_schema_extra_.update(dict(orig_required=True))
else:
json_schema_extra_.update(dict(orig_required=False))
# make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
if (input is Input.Any or input is Input.Connection) and default_factory is PydanticUndefined:
default_ = None if default is PydanticUndefined else default
provided_args.update(dict(default=default_))
if default is not PydanticUndefined:
# before invoking, we'll grab the original default value and set it on the field if the field wasn't provided a value
json_schema_extra_.update(dict(default=default))
json_schema_extra_.update(dict(orig_default=default))
elif default is not PydanticUndefined and default_factory is PydanticUndefined:
default_ = default
provided_args.update(dict(default=default_))
json_schema_extra_.update(dict(orig_default=default_))
elif default_factory is not PydanticUndefined:
provided_args.update(dict(default_factory=default_factory))
# TODO: cannot serialize default_factory...
# json_schema_extra_.update(dict(orig_default_factory=default_factory))
return Field(
**provided_args,
json_schema_extra=json_schema_extra_,
) )
def OutputField( def OutputField(
# copied from pydantic's Field *args: Any,
default: Any = _Unset, default: Any = Undefined,
default_factory: Callable[[], Any] | None = _Unset, default_factory: Optional[NoArgAnyCallable] = None,
title: str | None = _Unset, alias: Optional[str] = None,
description: str | None = _Unset, title: Optional[str] = None,
pattern: str | None = _Unset, description: Optional[str] = None,
strict: bool | None = _Unset, exclude: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
gt: float | None = _Unset, include: Optional[Union[AbstractSet[Union[int, str]], Mapping[Union[int, str], Any], Any]] = None,
ge: float | None = _Unset, const: Optional[bool] = None,
lt: float | None = _Unset, gt: Optional[float] = None,
le: float | None = _Unset, ge: Optional[float] = None,
multiple_of: float | None = _Unset, lt: Optional[float] = None,
allow_inf_nan: bool | None = _Unset, le: Optional[float] = None,
max_digits: int | None = _Unset, multiple_of: Optional[float] = None,
decimal_places: int | None = _Unset, allow_inf_nan: Optional[bool] = None,
min_length: int | None = _Unset, max_digits: Optional[int] = None,
max_length: int | None = _Unset, decimal_places: Optional[int] = None,
# custom min_items: Optional[int] = None,
max_items: Optional[int] = None,
unique_items: Optional[bool] = None,
min_length: Optional[int] = None,
max_length: Optional[int] = None,
allow_mutation: bool = True,
regex: Optional[str] = None,
discriminator: Optional[str] = None,
repr: bool = True,
ui_type: Optional[UIType] = None, ui_type: Optional[UIType] = None,
ui_hidden: bool = False, ui_hidden: bool = False,
ui_order: Optional[int] = None, ui_order: Optional[int] = None,
**kwargs: Any,
) -> Any: ) -> Any:
""" """
Creates an output field for an invocation output. Creates an output field for an invocation output.
@ -430,12 +379,15 @@ def OutputField(
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \ : param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
""" """
return Field( return Field(
*args,
default=default, default=default,
default_factory=default_factory, default_factory=default_factory,
alias=alias,
title=title, title=title,
description=description, description=description,
pattern=pattern, exclude=exclude,
strict=strict, include=include,
const=const,
gt=gt, gt=gt,
ge=ge, ge=ge,
lt=lt, lt=lt,
@ -444,14 +396,19 @@ def OutputField(
allow_inf_nan=allow_inf_nan, allow_inf_nan=allow_inf_nan,
max_digits=max_digits, max_digits=max_digits,
decimal_places=decimal_places, decimal_places=decimal_places,
min_items=min_items,
max_items=max_items,
unique_items=unique_items,
min_length=min_length, min_length=min_length,
max_length=max_length, max_length=max_length,
json_schema_extra=dict( allow_mutation=allow_mutation,
ui_type=ui_type, regex=regex,
ui_hidden=ui_hidden, discriminator=discriminator,
ui_order=ui_order, repr=repr,
_field_kind="output", ui_type=ui_type,
), ui_hidden=ui_hidden,
ui_order=ui_order,
**kwargs,
) )
@ -465,13 +422,7 @@ class UIConfigBase(BaseModel):
title: Optional[str] = Field(default=None, description="The node's display name") title: Optional[str] = Field(default=None, description="The node's display name")
category: Optional[str] = Field(default=None, description="The node's category") category: Optional[str] = Field(default=None, description="The node's category")
version: Optional[str] = Field( version: Optional[str] = Field(
default=None, default=None, description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".'
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
)
model_config = ConfigDict(
validate_assignment=True,
json_schema_serialization_defaults_required=True,
) )
@ -506,39 +457,23 @@ class BaseInvocationOutput(BaseModel):
All invocation outputs must use the `@invocation_output` decorator to provide their unique type. All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
""" """
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
@classmethod @classmethod
def register_output(cls, output: BaseInvocationOutput) -> None: def get_all_subclasses_tuple(cls):
cls._output_classes.add(output) subclasses = []
toprocess = [cls]
while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
return tuple(subclasses)
@classmethod class Config:
def get_outputs(cls) -> Iterable[BaseInvocationOutput]: @staticmethod
return cls._output_classes def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
if "required" not in schema or not isinstance(schema["required"], list):
@classmethod schema["required"] = list()
def get_outputs_union(cls) -> UnionType: schema["required"].extend(["type"])
outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
return outputs_union # type: ignore [return-value]
@classmethod
def get_output_types(cls) -> Iterable[str]:
return map(lambda i: get_type(i), BaseInvocationOutput.get_outputs())
@staticmethod
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
# Because we use a pydantic Literal field with default value for the invocation type,
# it will be typed as optional in the OpenAPI schema. Make it required manually.
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type"])
model_config = ConfigDict(
protected_namespaces=(),
validate_assignment=True,
json_schema_serialization_defaults_required=True,
json_schema_extra=json_schema_extra,
)
class RequiredConnectionException(Exception): class RequiredConnectionException(Exception):
@ -557,94 +492,110 @@ class MissingInputException(Exception):
class BaseInvocation(ABC, BaseModel): class BaseInvocation(ABC, BaseModel):
""" """
A node to process inputs and produce outputs.
May use dependency injection in __init__ to receive providers.
All invocations must use the `@invocation` decorator to provide their unique type. All invocations must use the `@invocation` decorator to provide their unique type.
""" """
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
@classmethod @classmethod
def register_invocation(cls, invocation: BaseInvocation) -> None: def get_all_subclasses(cls):
cls._invocation_classes.add(invocation)
@classmethod
def get_invocations_union(cls) -> UnionType:
invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
return invocations_union # type: ignore [return-value]
@classmethod
def get_invocations(cls) -> Iterable[BaseInvocation]:
app_config = InvokeAIAppConfig.get_config() app_config = InvokeAIAppConfig.get_config()
allowed_invocations: set[BaseInvocation] = set() subclasses = []
for sc in cls._invocation_classes: toprocess = [cls]
invocation_type = get_type(sc) while len(toprocess) > 0:
next = toprocess.pop(0)
next_subclasses = next.__subclasses__()
subclasses.extend(next_subclasses)
toprocess.extend(next_subclasses)
allowed_invocations = []
for sc in subclasses:
is_in_allowlist = ( is_in_allowlist = (
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True sc.__fields__.get("type").default in app_config.allow_nodes
if isinstance(app_config.allow_nodes, list)
else True
) )
is_in_denylist = ( is_in_denylist = (
invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False sc.__fields__.get("type").default in app_config.deny_nodes
if isinstance(app_config.deny_nodes, list)
else False
) )
if is_in_allowlist and not is_in_denylist: if is_in_allowlist and not is_in_denylist:
allowed_invocations.add(sc) allowed_invocations.append(sc)
return allowed_invocations return allowed_invocations
@classmethod @classmethod
def get_invocations_map(cls) -> dict[str, BaseInvocation]: def get_invocations(cls):
return tuple(BaseInvocation.get_all_subclasses())
@classmethod
def get_invocations_map(cls):
# Get the type strings out of the literals and into a dictionary # Get the type strings out of the literals and into a dictionary
return dict( return dict(
map( map(
lambda i: (get_type(i), i), lambda t: (get_args(get_type_hints(t)["type"])[0], t),
BaseInvocation.get_invocations(), BaseInvocation.get_all_subclasses(),
) )
) )
@classmethod @classmethod
def get_invocation_types(cls) -> Iterable[str]: def get_output_type(cls):
return map(lambda i: get_type(i), BaseInvocation.get_invocations())
@classmethod
def get_output_type(cls) -> BaseInvocationOutput:
return signature(cls.invoke).return_annotation return signature(cls.invoke).return_annotation
@staticmethod class Config:
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None: validate_assignment = True
# Add the various UI-facing attributes to the schema. These are used to build the invocation templates. validate_all = True
uiconfig = getattr(model_class, "UIConfig", None)
if uiconfig and hasattr(uiconfig, "title"): @staticmethod
schema["title"] = uiconfig.title def schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
if uiconfig and hasattr(uiconfig, "tags"): uiconfig = getattr(model_class, "UIConfig", None)
schema["tags"] = uiconfig.tags if uiconfig and hasattr(uiconfig, "title"):
if uiconfig and hasattr(uiconfig, "category"): schema["title"] = uiconfig.title
schema["category"] = uiconfig.category if uiconfig and hasattr(uiconfig, "tags"):
if uiconfig and hasattr(uiconfig, "version"): schema["tags"] = uiconfig.tags
schema["version"] = uiconfig.version if uiconfig and hasattr(uiconfig, "category"):
if "required" not in schema or not isinstance(schema["required"], list): schema["category"] = uiconfig.category
schema["required"] = list() if uiconfig and hasattr(uiconfig, "version"):
schema["required"].extend(["type", "id"]) schema["version"] = uiconfig.version
if "required" not in schema or not isinstance(schema["required"], list):
schema["required"] = list()
schema["required"].extend(["type", "id"])
@abstractmethod @abstractmethod
def invoke(self, context: InvocationContext) -> BaseInvocationOutput: def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
"""Invoke with provided context and return outputs.""" """Invoke with provided context and return outputs."""
pass pass
def __init__(self, **data):
# nodes may have required fields, that can accept input from connections
# on instantiation of the model, we need to exclude these from validation
restore = dict()
try:
field_names = list(self.__fields__.keys())
for field_name in field_names:
# if the field is required and may get its value from a connection, exclude it from validation
field = self.__fields__[field_name]
_input = field.field_info.extra.get("input", None)
if _input in [Input.Connection, Input.Any] and field.required:
if field_name not in data:
restore[field_name] = self.__fields__.pop(field_name)
# instantiate the node, which will validate the data
super().__init__(**data)
finally:
# restore the removed fields
for field_name, field in restore.items():
self.__fields__[field_name] = field
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput: def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
for field_name, field in self.model_fields.items(): for field_name, field in self.__fields__.items():
if not field.json_schema_extra or callable(field.json_schema_extra): _input = field.field_info.extra.get("input", None)
# something has gone terribly awry, we should always have this and it should be a dict if field.required and not hasattr(self, field_name):
continue if _input == Input.Connection:
raise RequiredConnectionException(self.__fields__["type"].default, field_name)
# Here we handle the case where the field is optional in the pydantic class, but required elif _input == Input.Any:
# in the `invoke()` method. raise MissingInputException(self.__fields__["type"].default, field_name)
orig_default = field.json_schema_extra.get("orig_default", PydanticUndefined)
orig_required = field.json_schema_extra.get("orig_required", True)
input_ = field.json_schema_extra.get("input", None)
if orig_default is not PydanticUndefined and not hasattr(self, field_name):
setattr(self, field_name, orig_default)
if orig_required and orig_default is PydanticUndefined and getattr(self, field_name) is None:
if input_ == Input.Connection:
raise RequiredConnectionException(self.model_fields["type"].default, field_name)
elif input_ == Input.Any:
raise MissingInputException(self.model_fields["type"].default, field_name)
# skip node cache codepath if it's disabled # skip node cache codepath if it's disabled
if context.services.configuration.node_cache_size == 0: if context.services.configuration.node_cache_size == 0:
@ -667,96 +618,35 @@ class BaseInvocation(ABC, BaseModel):
return self.invoke(context) return self.invoke(context)
def get_type(self) -> str: def get_type(self) -> str:
return self.model_fields["type"].default return self.__fields__["type"].default
id: str = Field( id: str = Field(
default_factory=uuid_string, description="The id of this instance of an invocation. Must be unique among all instances of invocations."
description="The id of this instance of an invocation. Must be unique among all instances of invocations.",
json_schema_extra=dict(_field_kind="internal"),
) )
is_intermediate: bool = Field( is_intermediate: bool = InputField(
default=False, default=False, description="Whether or not this is an intermediate invocation.", ui_type=UIType.IsIntermediate
description="Whether or not this is an intermediate invocation.",
json_schema_extra=dict(ui_type=UIType.IsIntermediate, _field_kind="internal"),
) )
use_cache: bool = Field( workflow: Optional[str] = InputField(
default=True, description="Whether or not to use the cache", json_schema_extra=dict(_field_kind="internal") default=None,
description="The workflow to save with the image",
ui_type=UIType.WorkflowField,
) )
use_cache: bool = InputField(default=True, description="Whether or not to use the cache")
@validator("workflow", pre=True)
def validate_workflow_is_json(cls, v):
if v is None:
return None
try:
json.loads(v)
except json.decoder.JSONDecodeError:
raise ValueError("Workflow must be valid JSON")
return v
UIConfig: ClassVar[Type[UIConfigBase]] UIConfig: ClassVar[Type[UIConfigBase]]
model_config = ConfigDict(
protected_namespaces=(),
validate_assignment=True,
json_schema_extra=json_schema_extra,
json_schema_serialization_defaults_required=True,
coerce_numbers_to_str=True,
)
GenericBaseInvocation = TypeVar("GenericBaseInvocation", bound=BaseInvocation)
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
RESERVED_INPUT_FIELD_NAMES = {
"id",
"is_intermediate",
"use_cache",
"type",
"workflow",
"metadata",
}
RESERVED_OUTPUT_FIELD_NAMES = {"type"}
class _Model(BaseModel):
pass
# Get all pydantic model attrs, methods, etc
RESERVED_PYDANTIC_FIELD_NAMES = set(map(lambda m: m[0], inspect.getmembers(_Model())))
def validate_fields(model_fields: dict[str, FieldInfo], model_type: str) -> None:
"""
Validates the fields of an invocation or invocation output:
- must not override any pydantic reserved fields
- must be created via `InputField`, `OutputField`, or be an internal field defined in this file
"""
for name, field in model_fields.items():
if name in RESERVED_PYDANTIC_FIELD_NAMES:
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved by pydantic)')
field_kind = (
# _field_kind is defined via InputField(), OutputField() or by one of the internal fields defined in this file
field.json_schema_extra.get("_field_kind", None)
if field.json_schema_extra
else None
)
# must have a field_kind
if field_kind is None or field_kind not in {"input", "output", "internal"}:
raise InvalidFieldError(
f'Invalid field definition for "{name}" on "{model_type}" (maybe it\'s not an InputField or OutputField?)'
)
if field_kind == "input" and name in RESERVED_INPUT_FIELD_NAMES:
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved input field name)')
if field_kind == "output" and name in RESERVED_OUTPUT_FIELD_NAMES:
raise InvalidFieldError(f'Invalid field name "{name}" on "{model_type}" (reserved output field name)')
# internal fields *must* be in the reserved list
if (
field_kind == "internal"
and name not in RESERVED_INPUT_FIELD_NAMES
and name not in RESERVED_OUTPUT_FIELD_NAMES
):
raise InvalidFieldError(
f'Invalid field name "{name}" on "{model_type}" (internal field without reserved name)'
)
return None
def invocation( def invocation(
@ -766,9 +656,9 @@ def invocation(
category: Optional[str] = None, category: Optional[str] = None,
version: Optional[str] = None, version: Optional[str] = None,
use_cache: Optional[bool] = True, use_cache: Optional[bool] = True,
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]: ) -> Callable[[Type[GenericBaseInvocation]], Type[GenericBaseInvocation]]:
""" """
Registers an invocation. Adds metadata to an invocation.
:param str invocation_type: The type of the invocation. Must be unique among all invocations. :param str invocation_type: The type of the invocation. Must be unique among all invocations.
:param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None. :param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None.
@ -778,17 +668,12 @@ def invocation(
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor. :param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
""" """
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]: def wrapper(cls: Type[GenericBaseInvocation]) -> Type[GenericBaseInvocation]:
# Validate invocation types on creation of invocation classes # Validate invocation types on creation of invocation classes
# TODO: ensure unique? # TODO: ensure unique?
if re.compile(r"^\S+$").match(invocation_type) is None: if re.compile(r"^\S+$").match(invocation_type) is None:
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"') raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
if invocation_type in BaseInvocation.get_invocation_types():
raise ValueError(f'Invocation type "{invocation_type}" already exists')
validate_fields(cls.model_fields, invocation_type)
# Add OpenAPI schema extras # Add OpenAPI schema extras
uiconf_name = cls.__qualname__ + ".UIConfig" uiconf_name = cls.__qualname__ + ".UIConfig"
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name: if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
@ -806,114 +691,59 @@ def invocation(
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
cls.UIConfig.version = version cls.UIConfig.version = version
if use_cache is not None: if use_cache is not None:
cls.model_fields["use_cache"].default = use_cache cls.__fields__["use_cache"].default = use_cache
# Add the invocation type to the model.
# You'd be tempted to just add the type field and rebuild the model, like this:
# cls.model_fields.update(type=FieldInfo.from_annotated_attribute(Literal[invocation_type], invocation_type))
# cls.model_rebuild() or cls.model_rebuild(force=True)
# Unfortunately, because the `GraphInvocation` uses a forward ref in its `graph` field's annotation, this does
# not work. Instead, we have to create a new class with the type field and patch the original class with it.
# Add the invocation type to the pydantic model of the invocation
invocation_type_annotation = Literal[invocation_type] # type: ignore invocation_type_annotation = Literal[invocation_type] # type: ignore
invocation_type_field = Field( invocation_type_field = ModelField.infer(
title="type", default=invocation_type, json_schema_extra=dict(_field_kind="internal") name="type",
value=invocation_type,
annotation=invocation_type_annotation,
class_validators=None,
config=cls.__config__,
) )
cls.__fields__.update({"type": invocation_type_field})
docstring = cls.__doc__ # to support 3.9, 3.10 and 3.11, as described in https://docs.python.org/3/howto/annotations.html
cls = create_model( if annotations := cls.__dict__.get("__annotations__", None):
cls.__qualname__, annotations.update({"type": invocation_type_annotation})
__base__=cls,
__module__=cls.__module__,
type=(invocation_type_annotation, invocation_type_field),
)
cls.__doc__ = docstring
# TODO: how to type this correctly? it's typed as ModelMetaclass, a private class in pydantic
BaseInvocation.register_invocation(cls) # type: ignore
return cls return cls
return wrapper return wrapper
TBaseInvocationOutput = TypeVar("TBaseInvocationOutput", bound=BaseInvocationOutput) GenericBaseInvocationOutput = TypeVar("GenericBaseInvocationOutput", bound=BaseInvocationOutput)
def invocation_output( def invocation_output(
output_type: str, output_type: str,
) -> Callable[[Type[TBaseInvocationOutput]], Type[TBaseInvocationOutput]]: ) -> Callable[[Type[GenericBaseInvocationOutput]], Type[GenericBaseInvocationOutput]]:
""" """
Adds metadata to an invocation output. Adds metadata to an invocation output.
:param str output_type: The type of the invocation output. Must be unique among all invocation outputs. :param str output_type: The type of the invocation output. Must be unique among all invocation outputs.
""" """
def wrapper(cls: Type[TBaseInvocationOutput]) -> Type[TBaseInvocationOutput]: def wrapper(cls: Type[GenericBaseInvocationOutput]) -> Type[GenericBaseInvocationOutput]:
# Validate output types on creation of invocation output classes # Validate output types on creation of invocation output classes
# TODO: ensure unique? # TODO: ensure unique?
if re.compile(r"^\S+$").match(output_type) is None: if re.compile(r"^\S+$").match(output_type) is None:
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"') raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
if output_type in BaseInvocationOutput.get_output_types(): # Add the output type to the pydantic model of the invocation output
raise ValueError(f'Invocation type "{output_type}" already exists')
validate_fields(cls.model_fields, output_type)
# Add the output type to the model.
output_type_annotation = Literal[output_type] # type: ignore output_type_annotation = Literal[output_type] # type: ignore
output_type_field = Field(title="type", default=output_type, json_schema_extra=dict(_field_kind="internal")) output_type_field = ModelField.infer(
name="type",
docstring = cls.__doc__ value=output_type,
cls = create_model( annotation=output_type_annotation,
cls.__qualname__, class_validators=None,
__base__=cls, config=cls.__config__,
__module__=cls.__module__,
type=(output_type_annotation, output_type_field),
) )
cls.__doc__ = docstring cls.__fields__.update({"type": output_type_field})
BaseInvocationOutput.register_output(cls) # type: ignore # TODO: how to type this correctly? # to support 3.9, 3.10 and 3.11, as described in https://docs.python.org/3/howto/annotations.html
if annotations := cls.__dict__.get("__annotations__", None):
annotations.update({"type": output_type_annotation})
return cls return cls
return wrapper return wrapper
class WorkflowField(RootModel):
"""
Pydantic model for workflows with custom root of type dict[str, Any].
Workflows are stored without a strict schema.
"""
root: dict[str, Any] = Field(description="The workflow")
WorkflowFieldValidator = TypeAdapter(WorkflowField)
class WithWorkflow(BaseModel):
workflow: Optional[WorkflowField] = Field(
default=None, description=FieldDescriptions.workflow, json_schema_extra=dict(_field_kind="internal")
)
class MetadataField(RootModel):
"""
Pydantic model for metadata with custom root of type dict[str, Any].
Metadata is stored without a strict schema.
"""
root: dict[str, Any] = Field(description="The metadata")
MetadataFieldValidator = TypeAdapter(MetadataField)
class WithMetadata(BaseModel):
metadata: Optional[MetadataField] = Field(
default=None, description=FieldDescriptions.metadata, json_schema_extra=dict(_field_kind="internal")
)

View File

@ -2,7 +2,7 @@
import numpy as np import numpy as np
from pydantic import ValidationInfo, field_validator from pydantic import validator
from invokeai.app.invocations.primitives import IntegerCollectionOutput from invokeai.app.invocations.primitives import IntegerCollectionOutput
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
@ -20,9 +20,9 @@ class RangeInvocation(BaseInvocation):
stop: int = InputField(default=10, description="The stop of the range") stop: int = InputField(default=10, description="The stop of the range")
step: int = InputField(default=1, description="The step of the range") step: int = InputField(default=1, description="The step of the range")
@field_validator("stop") @validator("stop")
def stop_gt_start(cls, v: int, info: ValidationInfo): def stop_gt_start(cls, v, values):
if "start" in info.data and v <= info.data["start"]: if "start" in values and v <= values["start"]:
raise ValueError("stop must be greater than start") raise ValueError("stop must be greater than start")
return v return v

View File

@ -1,6 +1,6 @@
import re import re
from dataclasses import dataclass from dataclasses import dataclass
from typing import List, Optional, Union from typing import List, Union
import torch import torch
from compel import Compel, ReturnedEmbeddingsType from compel import Compel, ReturnedEmbeddingsType
@ -13,8 +13,8 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
SDXLConditioningInfo, SDXLConditioningInfo,
) )
from ...backend.model_management.lora import ModelPatcher from ...backend.model_manager import ModelType, UnknownModelException
from ...backend.model_management.models import ModelNotFoundException, ModelType from ...backend.model_manager.lora import ModelPatcher
from ...backend.util.devices import torch_dtype from ...backend.util.devices import torch_dtype
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
@ -43,13 +43,7 @@ class ConditioningFieldData:
# PerpNeg = "perp_neg" # PerpNeg = "perp_neg"
@invocation( @invocation("compel", title="Prompt", tags=["prompt", "compel"], category="conditioning", version="1.0.0")
"compel",
title="Prompt",
tags=["prompt", "compel"],
category="conditioning",
version="1.0.0",
)
class CompelInvocation(BaseInvocation): class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
@ -66,25 +60,23 @@ class CompelInvocation(BaseInvocation):
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_loader.get_model(
**self.clip.tokenizer.model_dump(), **self.clip.tokenizer.dict(),
context=context, context=context,
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_loader.get_model(
**self.clip.text_encoder.model_dump(), **self.clip.text_encoder.dict(),
context=context, context=context,
) )
def _lora_loader(): def _lora_loader():
for lora in self.clip.loras: for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_loader.get_model(**lora.dict(exclude={"weight"}), context=context)
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] # loras = [(context.services.model_loader.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = [] ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt): for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
@ -93,7 +85,7 @@ class CompelInvocation(BaseInvocation):
ti_list.append( ti_list.append(
( (
name, name,
context.services.model_manager.get_model( context.services.model_loader.get_model(
model_name=name, model_name=name,
base_model=self.clip.text_encoder.base_model, base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion, model_type=ModelType.TextualInversion,
@ -101,21 +93,20 @@ class CompelInvocation(BaseInvocation):
).context.model, ).context.model,
) )
) )
except ModelNotFoundException: except UnknownModelException:
# print(e) # print(e)
# import traceback # import traceback
# print(traceback.format_exc()) # print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found') print(f'Warn: trigger: "{trigger}" not found')
with ( with (
ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as ( ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer, tokenizer,
ti_manager, ti_manager,
), ),
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers), ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
text_encoder_info as text_encoder, text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
): ):
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
@ -168,12 +159,12 @@ class SDXLPromptInvocationBase:
lora_prefix: str, lora_prefix: str,
zero_on_empty: bool, zero_on_empty: bool,
): ):
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_loader.get_model(
**clip_field.tokenizer.model_dump(), **clip_field.tokenizer.dict(),
context=context, context=context,
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_loader.get_model(
**clip_field.text_encoder.model_dump(), **clip_field.text_encoder.dict(),
context=context, context=context,
) )
@ -181,11 +172,7 @@ class SDXLPromptInvocationBase:
if prompt == "" and zero_on_empty: if prompt == "" and zero_on_empty:
cpu_text_encoder = text_encoder_info.context.model cpu_text_encoder = text_encoder_info.context.model
c = torch.zeros( c = torch.zeros(
( (1, cpu_text_encoder.config.max_position_embeddings, cpu_text_encoder.config.hidden_size),
1,
cpu_text_encoder.config.max_position_embeddings,
cpu_text_encoder.config.hidden_size,
),
dtype=text_encoder_info.context.cache.precision, dtype=text_encoder_info.context.cache.precision,
) )
if get_pooled: if get_pooled:
@ -199,14 +186,12 @@ class SDXLPromptInvocationBase:
def _lora_loader(): def _lora_loader():
for lora in clip_field.loras: for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_loader.get_model(**lora.dict(exclude={"weight"}), context=context)
**lora.model_dump(exclude={"weight"}), context=context
)
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] # loras = [(context.services.model_loader.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = [] ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt): for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
@ -215,7 +200,7 @@ class SDXLPromptInvocationBase:
ti_list.append( ti_list.append(
( (
name, name,
context.services.model_manager.get_model( context.services.model_loader.get_model(
model_name=name, model_name=name,
base_model=clip_field.text_encoder.base_model, base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion, model_type=ModelType.TextualInversion,
@ -223,21 +208,20 @@ class SDXLPromptInvocationBase:
).context.model, ).context.model,
) )
) )
except ModelNotFoundException: except UnknownModelException:
# print(e) # print(e)
# import traceback # import traceback
# print(traceback.format_exc()) # print(traceback.format_exc())
print(f'Warn: trigger: "{trigger}" not found') print(f'Warn: trigger: "{trigger}" not found')
with ( with (
ModelPatcher.apply_lora(text_encoder_info.context.model, _lora_loader(), lora_prefix),
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as ( ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
tokenizer, tokenizer,
ti_manager, ti_manager,
), ),
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers), ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
text_encoder_info as text_encoder, text_encoder_info as text_encoder,
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
): ):
compel = Compel( compel = Compel(
tokenizer=tokenizer, tokenizer=tokenizer,
@ -289,16 +273,8 @@ class SDXLPromptInvocationBase:
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase): class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
prompt: str = InputField( prompt: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
default="", style: str = InputField(default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea)
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
style: str = InputField(
default="",
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
)
original_width: int = InputField(default=1024, description="") original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="") original_height: int = InputField(default=1024, description="")
crop_top: int = InputField(default=0, description="") crop_top: int = InputField(default=0, description="")
@ -334,9 +310,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
[ [
c1, c1,
torch.zeros( torch.zeros(
(c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]), (c1.shape[0], c2.shape[1] - c1.shape[1], c1.shape[2]), device=c1.device, dtype=c1.dtype
device=c1.device,
dtype=c1.dtype,
), ),
], ],
dim=1, dim=1,
@ -347,9 +321,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
[ [
c2, c2,
torch.zeros( torch.zeros(
(c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]), (c2.shape[0], c1.shape[1] - c2.shape[1], c2.shape[2]), device=c2.device, dtype=c2.dtype
device=c2.device,
dtype=c2.dtype,
), ),
], ],
dim=1, dim=1,
@ -387,9 +359,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
"""Parse prompt using compel package to conditioning.""" """Parse prompt using compel package to conditioning."""
style: str = InputField( style: str = InputField(
default="", default="", description=FieldDescriptions.compel_prompt, ui_component=UIComponent.Textarea
description=FieldDescriptions.compel_prompt,
ui_component=UIComponent.Textarea,
) # TODO: ? ) # TODO: ?
original_width: int = InputField(default=1024, description="") original_width: int = InputField(default=1024, description="")
original_height: int = InputField(default=1024, description="") original_height: int = InputField(default=1024, description="")
@ -433,16 +403,10 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
class ClipSkipInvocationOutput(BaseInvocationOutput): class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output""" """Clip skip node output"""
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP") clip: ClipField = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@invocation( @invocation("clip_skip", title="CLIP Skip", tags=["clipskip", "clip", "skip"], category="conditioning", version="1.0.0")
"clip_skip",
title="CLIP Skip",
tags=["clipskip", "clip", "skip"],
category="conditioning",
version="1.0.0",
)
class ClipSkipInvocation(BaseInvocation): class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model.""" """Skip layers in clip text_encoder model."""
@ -457,9 +421,7 @@ class ClipSkipInvocation(BaseInvocation):
def get_max_token_count( def get_max_token_count(
tokenizer, tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False
prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False,
) -> int: ) -> int:
if type(prompt) is Blend: if type(prompt) is Blend:
blend: Blend = prompt blend: Blend = prompt

View File

@ -2,7 +2,7 @@
# initial implementation by Gregg Helt, 2023 # initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux # heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float from builtins import bool, float
from typing import Dict, List, Literal, Union from typing import Dict, List, Literal, Optional, Union
import cv2 import cv2
import numpy as np import numpy as np
@ -24,12 +24,12 @@ from controlnet_aux import (
) )
from controlnet_aux.util import HWC3, ade_palette from controlnet_aux.util import HWC3, ade_palette
from PIL import Image from PIL import Image
from pydantic import BaseModel, ConfigDict, Field, field_validator from pydantic import BaseModel, Field, validator
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from ...backend.model_management import BaseModelType from ...backend.model_manager import BaseModelType
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
@ -38,8 +38,6 @@ from .baseinvocation import (
InputField, InputField,
InvocationContext, InvocationContext,
OutputField, OutputField,
WithMetadata,
WithWorkflow,
invocation, invocation,
invocation_output, invocation_output,
) )
@ -59,8 +57,6 @@ class ControlNetModelField(BaseModel):
model_name: str = Field(description="Name of the ControlNet model") model_name: str = Field(description="Name of the ControlNet model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class ControlField(BaseModel): class ControlField(BaseModel):
image: ImageField = Field(description="The control image") image: ImageField = Field(description="The control image")
@ -75,7 +71,7 @@ class ControlField(BaseModel):
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use") control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use") resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
@field_validator("control_weight") @validator("control_weight")
def validate_control_weight(cls, v): def validate_control_weight(cls, v):
"""Validate that all control weights in the valid range""" """Validate that all control weights in the valid range"""
if isinstance(v, list): if isinstance(v, list):
@ -128,13 +124,15 @@ class ControlNetInvocation(BaseInvocation):
) )
# This invocation exists for other invocations to subclass it - do not register with @invocation! @invocation(
class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithWorkflow): "image_processor", title="Base Image Processor", tags=["controlnet"], category="controlnet", version="1.0.0"
)
class ImageProcessorInvocation(BaseInvocation):
"""Base class for invocations that preprocess images for ControlNet""" """Base class for invocations that preprocess images for ControlNet"""
image: ImageField = InputField(description="The image to process") image: ImageField = InputField(description="The image to process")
def run_processor(self, image: Image.Image) -> Image.Image: def run_processor(self, image):
# superclass just passes through image without processing # superclass just passes through image without processing
return image return image
@ -152,7 +150,6 @@ class ImageProcessorInvocation(BaseInvocation, WithMetadata, WithWorkflow):
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
node_id=self.id, node_id=self.id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -396,9 +393,9 @@ class ContentShuffleImageProcessorInvocation(ImageProcessorInvocation):
detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res) detect_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.detect_res)
image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res) image_resolution: int = InputField(default=512, ge=0, description=FieldDescriptions.image_res)
h: int = InputField(default=512, ge=0, description="Content shuffle `h` parameter") h: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `h` parameter")
w: int = InputField(default=512, ge=0, description="Content shuffle `w` parameter") w: Optional[int] = InputField(default=512, ge=0, description="Content shuffle `w` parameter")
f: int = InputField(default=256, ge=0, description="Content shuffle `f` parameter") f: Optional[int] = InputField(default=256, ge=0, description="Content shuffle `f` parameter")
def run_processor(self, image): def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector() content_shuffle_processor = ContentShuffleDetector()
@ -578,14 +575,14 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
def run_processor(self, image: Image.Image): def run_processor(self, image: Image.Image):
image = image.convert("RGB") image = image.convert("RGB")
np_image = np.array(image, dtype=np.uint8) image = np.array(image, dtype=np.uint8)
height, width = np_image.shape[:2] height, width = image.shape[:2]
width_tile_size = min(self.color_map_tile_size, width) width_tile_size = min(self.color_map_tile_size, width)
height_tile_size = min(self.color_map_tile_size, height) height_tile_size = min(self.color_map_tile_size, height)
color_map = cv2.resize( color_map = cv2.resize(
np_image, image,
(width // width_tile_size, height // height_tile_size), (width // width_tile_size, height // height_tile_size),
interpolation=cv2.INTER_CUBIC, interpolation=cv2.INTER_CUBIC,
) )

View File

@ -1,51 +0,0 @@
# Custom Nodes / Node Packs
Copy your node packs to this directory.
When nodes are added or changed, you must restart the app to see the changes.
## Directory Structure
For a node pack to be loaded, it must be placed in a directory alongside this
file. Here's an example structure:
```py
.
├── __init__.py # Invoke-managed custom node loader
├── cool_node
├── __init__.py # see example below
└── cool_node.py
└── my_node_pack
├── __init__.py # see example below
├── tasty_node.py
├── bodacious_node.py
├── utils.py
└── extra_nodes
└── fancy_node.py
```
## Node Pack `__init__.py`
Each node pack must have an `__init__.py` file that imports its nodes.
The structure of each node or node pack is otherwise not important.
Here are examples, based on the example directory structure.
### `cool_node/__init__.py`
```py
from .cool_node import CoolInvocation
```
### `my_node_pack/__init__.py`
```py
from .tasty_node import TastyInvocation
from .bodacious_node import BodaciousInvocation
from .extra_nodes.fancy_node import FancyInvocation
```
Only nodes imported in the `__init__.py` file are loaded.

View File

@ -1,51 +0,0 @@
"""
Invoke-managed custom node loader. See README.md for more information.
"""
import sys
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.get_logger()
loaded_count = 0
for d in Path(__file__).parent.iterdir():
# skip files
if not d.is_dir():
continue
# skip hidden directories
if d.name.startswith("_") or d.name.startswith("."):
continue
# skip directories without an `__init__.py`
init = d / "__init__.py"
if not init.exists():
continue
module_name = init.parent.stem
# skip if already imported
if module_name in globals():
continue
# we have a legit module to import
spec = spec_from_file_location(module_name, init.absolute())
if spec is None or spec.loader is None:
logger.warn(f"Could not load {init}")
continue
module = module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
loaded_count += 1
del init, module_name
logger.info(f"Loaded {loaded_count} modules from {Path(__file__).parent}")

View File

@ -6,13 +6,13 @@ import numpy
from PIL import Image, ImageOps from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin from invokeai.app.models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.0.0") @invocation("cv_inpaint", title="OpenCV Inpaint", tags=["opencv", "inpaint"], category="inpaint", version="1.0.0")
class CvInpaintInvocation(BaseInvocation, WithMetadata, WithWorkflow): class CvInpaintInvocation(BaseInvocation):
"""Simple inpaint using opencv.""" """Simple inpaint using opencv."""
image: ImageField = InputField(description="The image to inpaint") image: ImageField = InputField(description="The image to inpaint")

View File

@ -8,7 +8,7 @@ import numpy as np
from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import] from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import]
from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps
from PIL.Image import Image as ImageType from PIL.Image import Image as ImageType
from pydantic import field_validator from pydantic import validator
import invokeai.assets.fonts as font_assets import invokeai.assets.fonts as font_assets
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
@ -16,13 +16,11 @@ from invokeai.app.invocations.baseinvocation import (
InputField, InputField,
InvocationContext, InvocationContext,
OutputField, OutputField,
WithMetadata,
WithWorkflow,
invocation, invocation,
invocation_output, invocation_output,
) )
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin from invokeai.app.models.image import ImageCategory, ResourceOrigin
@invocation_output("face_mask_output") @invocation_output("face_mask_output")
@ -48,8 +46,6 @@ class FaceResultData(TypedDict):
y_center: float y_center: float
mesh_width: int mesh_width: int
mesh_height: int mesh_height: int
chunk_x_offset: int
chunk_y_offset: int
class FaceResultDataWithId(FaceResultData): class FaceResultDataWithId(FaceResultData):
@ -82,48 +78,6 @@ FONT_SIZE = 32
FONT_STROKE_WIDTH = 4 FONT_STROKE_WIDTH = 4
def coalesce_faces(face1: FaceResultData, face2: FaceResultData) -> FaceResultData:
face1_x_offset = face1["chunk_x_offset"] - min(face1["chunk_x_offset"], face2["chunk_x_offset"])
face2_x_offset = face2["chunk_x_offset"] - min(face1["chunk_x_offset"], face2["chunk_x_offset"])
face1_y_offset = face1["chunk_y_offset"] - min(face1["chunk_y_offset"], face2["chunk_y_offset"])
face2_y_offset = face2["chunk_y_offset"] - min(face1["chunk_y_offset"], face2["chunk_y_offset"])
new_im_width = (
max(face1["image"].width, face2["image"].width)
+ max(face1["chunk_x_offset"], face2["chunk_x_offset"])
- min(face1["chunk_x_offset"], face2["chunk_x_offset"])
)
new_im_height = (
max(face1["image"].height, face2["image"].height)
+ max(face1["chunk_y_offset"], face2["chunk_y_offset"])
- min(face1["chunk_y_offset"], face2["chunk_y_offset"])
)
pil_image = Image.new(mode=face1["image"].mode, size=(new_im_width, new_im_height))
pil_image.paste(face1["image"], (face1_x_offset, face1_y_offset))
pil_image.paste(face2["image"], (face2_x_offset, face2_y_offset))
# Mask images are always from the origin
new_mask_im_width = max(face1["mask"].width, face2["mask"].width)
new_mask_im_height = max(face1["mask"].height, face2["mask"].height)
mask_pil = create_white_image(new_mask_im_width, new_mask_im_height)
black_image = create_black_image(face1["mask"].width, face1["mask"].height)
mask_pil.paste(black_image, (0, 0), ImageOps.invert(face1["mask"]))
black_image = create_black_image(face2["mask"].width, face2["mask"].height)
mask_pil.paste(black_image, (0, 0), ImageOps.invert(face2["mask"]))
new_face = FaceResultData(
image=pil_image,
mask=mask_pil,
x_center=max(face1["x_center"], face2["x_center"]),
y_center=max(face1["y_center"], face2["y_center"]),
mesh_width=max(face1["mesh_width"], face2["mesh_width"]),
mesh_height=max(face1["mesh_height"], face2["mesh_height"]),
chunk_x_offset=max(face1["chunk_x_offset"], face2["chunk_x_offset"]),
chunk_y_offset=max(face2["chunk_y_offset"], face2["chunk_y_offset"]),
)
return new_face
def prepare_faces_list( def prepare_faces_list(
face_result_list: list[FaceResultData], face_result_list: list[FaceResultData],
) -> list[FaceResultDataWithId]: ) -> list[FaceResultDataWithId]:
@ -137,7 +91,7 @@ def prepare_faces_list(
should_add = True should_add = True
candidate_x_center = candidate["x_center"] candidate_x_center = candidate["x_center"]
candidate_y_center = candidate["y_center"] candidate_y_center = candidate["y_center"]
for idx, face in enumerate(deduped_faces): for face in deduped_faces:
face_center_x = face["x_center"] face_center_x = face["x_center"]
face_center_y = face["y_center"] face_center_y = face["y_center"]
face_radius_w = face["mesh_width"] / 2 face_radius_w = face["mesh_width"] / 2
@ -151,7 +105,6 @@ def prepare_faces_list(
) )
if p < 1: # Inside of the already-added face's radius if p < 1: # Inside of the already-added face's radius
deduped_faces[idx] = coalesce_faces(face, candidate)
should_add = False should_add = False
break break
@ -185,6 +138,7 @@ def generate_face_box_mask(
chunk_x_offset: int = 0, chunk_x_offset: int = 0,
chunk_y_offset: int = 0, chunk_y_offset: int = 0,
draw_mesh: bool = True, draw_mesh: bool = True,
check_bounds: bool = True,
) -> list[FaceResultData]: ) -> list[FaceResultData]:
result = [] result = []
mask_pil = None mask_pil = None
@ -257,20 +211,33 @@ def generate_face_box_mask(
mask_pil = create_white_image(w + chunk_x_offset, h + chunk_y_offset) mask_pil = create_white_image(w + chunk_x_offset, h + chunk_y_offset)
mask_pil.paste(init_mask_pil, (chunk_x_offset, chunk_y_offset)) mask_pil.paste(init_mask_pil, (chunk_x_offset, chunk_y_offset))
x_center = float(x_center) left_side = x_center - mesh_width
y_center = float(y_center) right_side = x_center + mesh_width
face = FaceResultData( top_side = y_center - mesh_height
image=pil_image, bottom_side = y_center + mesh_height
mask=mask_pil or create_white_image(*pil_image.size), im_width, im_height = pil_image.size
x_center=x_center + chunk_x_offset, over_w = im_width * 0.1
y_center=y_center + chunk_y_offset, over_h = im_height * 0.1
mesh_width=mesh_width, if not check_bounds or (
mesh_height=mesh_height, (left_side >= -over_w)
chunk_x_offset=chunk_x_offset, and (right_side < im_width + over_w)
chunk_y_offset=chunk_y_offset, and (top_side >= -over_h)
) and (bottom_side < im_height + over_h)
):
x_center = float(x_center)
y_center = float(y_center)
face = FaceResultData(
image=pil_image,
mask=mask_pil or create_white_image(*pil_image.size),
x_center=x_center + chunk_x_offset,
y_center=y_center + chunk_y_offset,
mesh_width=mesh_width,
mesh_height=mesh_height,
)
result.append(face) result.append(face)
else:
context.services.logger.info("FaceTools --> Face out of bounds, ignoring.")
return result return result
@ -379,6 +346,7 @@ def get_faces_list(
chunk_x_offset=0, chunk_x_offset=0,
chunk_y_offset=0, chunk_y_offset=0,
draw_mesh=draw_mesh, draw_mesh=draw_mesh,
check_bounds=False,
) )
if should_chunk or len(result) == 0: if should_chunk or len(result) == 0:
context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).") context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
@ -392,26 +360,24 @@ def get_faces_list(
if width > height: if width > height:
# Landscape - slice the image horizontally # Landscape - slice the image horizontally
fx = 0.0 fx = 0.0
steps = int(width * 2 / height) + 1 steps = int(width * 2 / height)
increment = (width - height) / (steps - 1)
while fx <= (width - height): while fx <= (width - height):
x = int(fx) x = int(fx)
image_chunks.append(image.crop((x, 0, x + height, height))) image_chunks.append(image.crop((x, 0, x + height - 1, height - 1)))
x_offsets.append(x) x_offsets.append(x)
y_offsets.append(0) y_offsets.append(0)
fx += increment fx += (width - height) / steps
context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}") context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}")
elif height > width: elif height > width:
# Portrait - slice the image vertically # Portrait - slice the image vertically
fy = 0.0 fy = 0.0
steps = int(height * 2 / width) + 1 steps = int(height * 2 / width)
increment = (height - width) / (steps - 1)
while fy <= (height - width): while fy <= (height - width):
y = int(fy) y = int(fy)
image_chunks.append(image.crop((0, y, width, y + width))) image_chunks.append(image.crop((0, y, width - 1, y + width - 1)))
x_offsets.append(0) x_offsets.append(0)
y_offsets.append(y) y_offsets.append(y)
fy += increment fy += (height - width) / steps
context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}") context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}")
for idx in range(len(image_chunks)): for idx in range(len(image_chunks)):
@ -438,8 +404,8 @@ def get_faces_list(
return all_faces return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.2") @invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.1")
class FaceOffInvocation(BaseInvocation, WithWorkflow, WithMetadata): class FaceOffInvocation(BaseInvocation):
"""Bound, extract, and mask a face from an image using MediaPipe detection""" """Bound, extract, and mask a face from an image using MediaPipe detection"""
image: ImageField = InputField(description="Image for face detection") image: ImageField = InputField(description="Image for face detection")
@ -532,8 +498,8 @@ class FaceOffInvocation(BaseInvocation, WithWorkflow, WithMetadata):
return output return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.2") @invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.1")
class FaceMaskInvocation(BaseInvocation, WithWorkflow, WithMetadata): class FaceMaskInvocation(BaseInvocation):
"""Face mask creation using mediapipe face detection""" """Face mask creation using mediapipe face detection"""
image: ImageField = InputField(description="Image to face detect") image: ImageField = InputField(description="Image to face detect")
@ -552,7 +518,7 @@ class FaceMaskInvocation(BaseInvocation, WithWorkflow, WithMetadata):
) )
invert_mask: bool = InputField(default=False, description="Toggle to invert the mask") invert_mask: bool = InputField(default=False, description="Toggle to invert the mask")
@field_validator("face_ids") @validator("face_ids")
def validate_comma_separated_ints(cls, v) -> str: def validate_comma_separated_ints(cls, v) -> str:
comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$") comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$")
if comma_separated_ints_regex.match(v) is None: if comma_separated_ints_regex.match(v) is None:
@ -650,9 +616,9 @@ class FaceMaskInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation( @invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.2" "face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.1"
) )
class FaceIdentifierInvocation(BaseInvocation, WithWorkflow, WithMetadata): class FaceIdentifierInvocation(BaseInvocation):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools.""" """Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
image: ImageField = InputField(description="Image to face detect") image: ImageField = InputField(description="Image to face detect")

View File

@ -7,21 +7,13 @@ import cv2
import numpy import numpy
from PIL import Image, ImageChops, ImageFilter, ImageOps from PIL import Image, ImageChops, ImageFilter, ImageOps
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput from invokeai.app.invocations.primitives import BoardField, ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark
from invokeai.backend.image_util.safety_checker import SafetyChecker from invokeai.backend.image_util.safety_checker import SafetyChecker
from .baseinvocation import ( from ..models.image import ImageCategory, ResourceOrigin
BaseInvocation, from .baseinvocation import BaseInvocation, FieldDescriptions, Input, InputField, InvocationContext, invocation
FieldDescriptions,
Input,
InputField,
InvocationContext,
WithMetadata,
WithWorkflow,
invocation,
)
@invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0") @invocation("show_image", title="Show Image", tags=["image"], category="image", version="1.0.0")
@ -45,7 +37,7 @@ class ShowImageInvocation(BaseInvocation):
@invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0") @invocation("blank_image", title="Blank Image", tags=["image"], category="image", version="1.0.0")
class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow): class BlankImageInvocation(BaseInvocation):
"""Creates a blank image and forwards it to the pipeline""" """Creates a blank image and forwards it to the pipeline"""
width: int = InputField(default=512, description="The width of the image") width: int = InputField(default=512, description="The width of the image")
@ -63,7 +55,6 @@ class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -75,7 +66,7 @@ class BlankImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0") @invocation("img_crop", title="Crop Image", tags=["image", "crop"], category="image", version="1.0.0")
class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageCropInvocation(BaseInvocation):
"""Crops an image to a specified box. The box can be outside of the image.""" """Crops an image to a specified box. The box can be outside of the image."""
image: ImageField = InputField(description="The image to crop") image: ImageField = InputField(description="The image to crop")
@ -97,7 +88,6 @@ class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -109,7 +99,7 @@ class ImageCropInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1") @invocation("img_paste", title="Paste Image", tags=["image", "paste"], category="image", version="1.0.1")
class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImagePasteInvocation(BaseInvocation):
"""Pastes an image into another image.""" """Pastes an image into another image."""
base_image: ImageField = InputField(description="The base image") base_image: ImageField = InputField(description="The base image")
@ -151,7 +141,6 @@ class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -163,7 +152,7 @@ class ImagePasteInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0") @invocation("tomask", title="Mask from Alpha", tags=["image", "mask"], category="image", version="1.0.0")
class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata): class MaskFromAlphaInvocation(BaseInvocation):
"""Extracts the alpha channel of an image as a mask.""" """Extracts the alpha channel of an image as a mask."""
image: ImageField = InputField(description="The image to create the mask from") image: ImageField = InputField(description="The image to create the mask from")
@ -183,7 +172,6 @@ class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -195,7 +183,7 @@ class MaskFromAlphaInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0") @invocation("img_mul", title="Multiply Images", tags=["image", "multiply"], category="image", version="1.0.0")
class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageMultiplyInvocation(BaseInvocation):
"""Multiplies two images together using `PIL.ImageChops.multiply()`.""" """Multiplies two images together using `PIL.ImageChops.multiply()`."""
image1: ImageField = InputField(description="The first image to multiply") image1: ImageField = InputField(description="The first image to multiply")
@ -214,7 +202,6 @@ class ImageMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -229,7 +216,7 @@ IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
@invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0") @invocation("img_chan", title="Extract Image Channel", tags=["image", "channel"], category="image", version="1.0.0")
class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageChannelInvocation(BaseInvocation):
"""Gets a channel from an image.""" """Gets a channel from an image."""
image: ImageField = InputField(description="The image to get the channel from") image: ImageField = InputField(description="The image to get the channel from")
@ -247,7 +234,6 @@ class ImageChannelInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -262,7 +248,7 @@ IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F
@invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0") @invocation("img_conv", title="Convert Image Mode", tags=["image", "convert"], category="image", version="1.0.0")
class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageConvertInvocation(BaseInvocation):
"""Converts an image to a different mode.""" """Converts an image to a different mode."""
image: ImageField = InputField(description="The image to convert") image: ImageField = InputField(description="The image to convert")
@ -280,7 +266,6 @@ class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -292,7 +277,7 @@ class ImageConvertInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0") @invocation("img_blur", title="Blur Image", tags=["image", "blur"], category="image", version="1.0.0")
class ImageBlurInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageBlurInvocation(BaseInvocation):
"""Blurs an image""" """Blurs an image"""
image: ImageField = InputField(description="The image to blur") image: ImageField = InputField(description="The image to blur")
@ -315,7 +300,6 @@ class ImageBlurInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -347,13 +331,16 @@ PIL_RESAMPLING_MAP = {
@invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0") @invocation("img_resize", title="Resize Image", tags=["image", "resize"], category="image", version="1.0.0")
class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow): class ImageResizeInvocation(BaseInvocation):
"""Resizes an image to specific dimensions""" """Resizes an image to specific dimensions"""
image: ImageField = InputField(description="The image to resize") image: ImageField = InputField(description="The image to resize")
width: int = InputField(default=512, gt=0, description="The width to resize to (px)") width: int = InputField(default=512, gt=0, description="The width to resize to (px)")
height: int = InputField(default=512, gt=0, description="The height to resize to (px)") height: int = InputField(default=512, gt=0, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode") resample_mode: PIL_RESAMPLING_MODES = InputField(default="bicubic", description="The resampling mode")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
@ -372,7 +359,7 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata, metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -384,7 +371,7 @@ class ImageResizeInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0") @invocation("img_scale", title="Scale Image", tags=["image", "scale"], category="image", version="1.0.0")
class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow): class ImageScaleInvocation(BaseInvocation):
"""Scales an image by a factor""" """Scales an image by a factor"""
image: ImageField = InputField(description="The image to scale") image: ImageField = InputField(description="The image to scale")
@ -414,7 +401,6 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -426,7 +412,7 @@ class ImageScaleInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0") @invocation("img_lerp", title="Lerp Image", tags=["image", "lerp"], category="image", version="1.0.0")
class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageLerpInvocation(BaseInvocation):
"""Linear interpolation of all pixels of an image""" """Linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp") image: ImageField = InputField(description="The image to lerp")
@ -448,7 +434,6 @@ class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -460,7 +445,7 @@ class ImageLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0") @invocation("img_ilerp", title="Inverse Lerp Image", tags=["image", "ilerp"], category="image", version="1.0.0")
class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageInverseLerpInvocation(BaseInvocation):
"""Inverse linear interpolation of all pixels of an image""" """Inverse linear interpolation of all pixels of an image"""
image: ImageField = InputField(description="The image to lerp") image: ImageField = InputField(description="The image to lerp")
@ -471,7 +456,7 @@ class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255 # type: ignore [assignment] image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255
ilerp_image = Image.fromarray(numpy.uint8(image_arr)) ilerp_image = Image.fromarray(numpy.uint8(image_arr))
@ -482,7 +467,6 @@ class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -494,10 +478,13 @@ class ImageInverseLerpInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0") @invocation("img_nsfw", title="Blur NSFW Image", tags=["image", "nsfw"], category="image", version="1.0.0")
class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow): class ImageNSFWBlurInvocation(BaseInvocation):
"""Add blur to NSFW-flagged images""" """Add blur to NSFW-flagged images"""
image: ImageField = InputField(description="The image to check") image: ImageField = InputField(description="The image to check")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
@ -518,7 +505,7 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata, metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -528,7 +515,7 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
height=image_dto.height, height=image_dto.height,
) )
def _get_caution_img(self) -> Image.Image: def _get_caution_img(self) -> Image:
import invokeai.app.assets.images as image_assets import invokeai.app.assets.images as image_assets
caution = Image.open(Path(image_assets.__path__[0]) / "caution.png") caution = Image.open(Path(image_assets.__path__[0]) / "caution.png")
@ -536,17 +523,16 @@ class ImageNSFWBlurInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation( @invocation(
"img_watermark", "img_watermark", title="Add Invisible Watermark", tags=["image", "watermark"], category="image", version="1.0.0"
title="Add Invisible Watermark",
tags=["image", "watermark"],
category="image",
version="1.0.0",
) )
class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow): class ImageWatermarkInvocation(BaseInvocation):
"""Add an invisible watermark to an image""" """Add an invisible watermark to an image"""
image: ImageField = InputField(description="The image to check") image: ImageField = InputField(description="The image to check")
text: str = InputField(default="InvokeAI", description="Watermark text") text: str = InputField(default="InvokeAI", description="Watermark text")
metadata: Optional[CoreMetadata] = InputField(
default=None, description=FieldDescriptions.core_metadata, ui_hidden=True
)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
@ -558,7 +544,7 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata, metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -570,7 +556,7 @@ class ImageWatermarkInvocation(BaseInvocation, WithMetadata, WithWorkflow):
@invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0") @invocation("mask_edge", title="Mask Edge", tags=["image", "mask", "inpaint"], category="image", version="1.0.0")
class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata): class MaskEdgeInvocation(BaseInvocation):
"""Applies an edge mask to an image""" """Applies an edge mask to an image"""
image: ImageField = InputField(description="The image to apply the mask to") image: ImageField = InputField(description="The image to apply the mask to")
@ -604,7 +590,6 @@ class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -616,13 +601,9 @@ class MaskEdgeInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation( @invocation(
"mask_combine", "mask_combine", title="Combine Masks", tags=["image", "mask", "multiply"], category="image", version="1.0.0"
title="Combine Masks",
tags=["image", "mask", "multiply"],
category="image",
version="1.0.0",
) )
class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata): class MaskCombineInvocation(BaseInvocation):
"""Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`.""" """Combine two masks together by multiplying them using `PIL.ImageChops.multiply()`."""
mask1: ImageField = InputField(description="The first mask to combine") mask1: ImageField = InputField(description="The first mask to combine")
@ -641,7 +622,6 @@ class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -653,7 +633,7 @@ class MaskCombineInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0") @invocation("color_correct", title="Color Correct", tags=["image", "color"], category="image", version="1.0.0")
class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ColorCorrectInvocation(BaseInvocation):
""" """
Shifts the colors of a target image to match the reference image, optionally Shifts the colors of a target image to match the reference image, optionally
using a mask to only color-correct certain regions of the target image. using a mask to only color-correct certain regions of the target image.
@ -752,7 +732,6 @@ class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -764,7 +743,7 @@ class ColorCorrectInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0") @invocation("img_hue_adjust", title="Adjust Image Hue", tags=["image", "hue"], category="image", version="1.0.0")
class ImageHueAdjustmentInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageHueAdjustmentInvocation(BaseInvocation):
"""Adjusts the Hue of an image.""" """Adjusts the Hue of an image."""
image: ImageField = InputField(description="The image to adjust") image: ImageField = InputField(description="The image to adjust")
@ -792,7 +771,6 @@ class ImageHueAdjustmentInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -868,7 +846,7 @@ CHANNEL_FORMATS = {
category="image", category="image",
version="1.0.0", version="1.0.0",
) )
class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageChannelOffsetInvocation(BaseInvocation):
"""Add or subtract a value from a specific color channel of an image.""" """Add or subtract a value from a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust") image: ImageField = InputField(description="The image to adjust")
@ -902,7 +880,6 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -939,7 +916,7 @@ class ImageChannelOffsetInvocation(BaseInvocation, WithWorkflow, WithMetadata):
category="image", category="image",
version="1.0.0", version="1.0.0",
) )
class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ImageChannelMultiplyInvocation(BaseInvocation):
"""Scale a specific color channel of an image.""" """Scale a specific color channel of an image."""
image: ImageField = InputField(description="The image to adjust") image: ImageField = InputField(description="The image to adjust")
@ -979,7 +956,6 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata)
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
workflow=self.workflow, workflow=self.workflow,
metadata=self.metadata,
) )
return ImageOutput( return ImageOutput(
@ -999,11 +975,16 @@ class ImageChannelMultiplyInvocation(BaseInvocation, WithWorkflow, WithMetadata)
version="1.0.1", version="1.0.1",
use_cache=False, use_cache=False,
) )
class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata): class SaveImageInvocation(BaseInvocation):
"""Saves an image. Unlike an image primitive, this invocation stores a copy of the image.""" """Saves an image. Unlike an image primitive, this invocation stores a copy of the image."""
image: ImageField = InputField(description=FieldDescriptions.image) image: ImageField = InputField(description=FieldDescriptions.image)
board: BoardField = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct) board: Optional[BoardField] = InputField(default=None, description=FieldDescriptions.board, input=Input.Direct)
metadata: CoreMetadata = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
@ -1016,7 +997,7 @@ class SaveImageInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata, metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )

View File

@ -7,13 +7,13 @@ import numpy as np
from PIL import Image, ImageOps from PIL import Image, ImageOps
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
from invokeai.backend.image_util.lama import LaMA from invokeai.backend.image_util.lama import LaMA
from invokeai.backend.image_util.patchmatch import PatchMatch from invokeai.backend.image_util.patchmatch import PatchMatch
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
@ -119,7 +119,7 @@ def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int]
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0") @invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata): class InfillColorInvocation(BaseInvocation):
"""Infills transparent areas of an image with a solid color""" """Infills transparent areas of an image with a solid color"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -143,7 +143,6 @@ class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -155,7 +154,7 @@ class InfillColorInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0") @invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata): class InfillTileInvocation(BaseInvocation):
"""Infills transparent areas of an image with tiles of the image""" """Infills transparent areas of an image with tiles of the image"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -180,7 +179,6 @@ class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -194,7 +192,7 @@ class InfillTileInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation( @invocation(
"infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0" "infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0"
) )
class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata): class InfillPatchMatchInvocation(BaseInvocation):
"""Infills transparent areas of an image using the PatchMatch algorithm""" """Infills transparent areas of an image using the PatchMatch algorithm"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -234,7 +232,6 @@ class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )
@ -246,7 +243,7 @@ class InfillPatchMatchInvocation(BaseInvocation, WithWorkflow, WithMetadata):
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0") @invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata): class LaMaInfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using the LaMa model""" """Infills transparent areas of an image using the LaMa model"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -263,8 +260,6 @@ class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow,
) )
return ImageOutput( return ImageOutput(
@ -274,8 +269,8 @@ class LaMaInfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
) )
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint") @invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint", version="1.0.0")
class CV2InfillInvocation(BaseInvocation, WithWorkflow, WithMetadata): class CV2InfillInvocation(BaseInvocation):
"""Infills transparent areas of an image using OpenCV Inpainting""" """Infills transparent areas of an image using OpenCV Inpainting"""
image: ImageField = InputField(description="The image to infill") image: ImageField = InputField(description="The image to infill")
@ -292,8 +287,6 @@ class CV2InfillInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow,
) )
return ImageOutput( return ImageOutput(

View File

@ -2,7 +2,7 @@ import os
from builtins import float from builtins import float
from typing import List, Union from typing import List, Union
from pydantic import BaseModel, ConfigDict, Field from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
@ -17,26 +17,22 @@ from invokeai.app.invocations.baseinvocation import (
invocation_output, invocation_output,
) )
from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.primitives import ImageField
from invokeai.backend.model_management.models.base import BaseModelType, ModelType from invokeai.backend.model_manager import BaseModelType, ModelType
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id from invokeai.backend.model_manager.models.ip_adapter import get_ip_adapter_image_encoder_model_id
class IPAdapterModelField(BaseModel): class IPAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the IP-Adapter model") model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class CLIPVisionModelField(BaseModel): class CLIPVisionModelField(BaseModel):
model_name: str = Field(description="Name of the CLIP Vision image encoder model") model_name: str = Field(description="Name of the CLIP Vision image encoder model")
base_model: BaseModelType = Field(description="Base model (usually 'Any')") base_model: BaseModelType = Field(description="Base model (usually 'Any')")
model_config = ConfigDict(protected_namespaces=())
class IPAdapterField(BaseModel): class IPAdapterField(BaseModel):
image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).") image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.") ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.") image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
@ -55,19 +51,19 @@ class IPAdapterOutput(BaseInvocationOutput):
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter") ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.0") @invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.0.0")
class IPAdapterInvocation(BaseInvocation): class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes.""" """Collects IP-Adapter info to pass to other nodes."""
# Inputs # Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).") image: ImageField = InputField(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = InputField( ip_adapter_model: IPAdapterModelField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1 description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
) )
# weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float) # weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float)
weight: Union[float, List[float]] = InputField( weight: Union[float, List[float]] = InputField(
default=1, ge=-1, description="The weight given to the IP-Adapter", ui_type=UIType.Float, title="Weight" default=1, ge=0, description="The weight given to the IP-Adapter", ui_type=UIType.Float, title="Weight"
) )
begin_step_percent: float = InputField( begin_step_percent: float = InputField(

View File

@ -19,10 +19,11 @@ from diffusers.models.attention_processor import (
) )
from diffusers.schedulers import DPMSolverSDEScheduler from diffusers.schedulers import DPMSolverSDEScheduler
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import field_validator from pydantic import validator
from torchvision.transforms.functional import resize as tv_resize from torchvision.transforms.functional import resize as tv_resize
from invokeai.app.invocations.ip_adapter import IPAdapterField from invokeai.app.invocations.ip_adapter import IPAdapterField
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ( from invokeai.app.invocations.primitives import (
DenoiseMaskField, DenoiseMaskField,
DenoiseMaskOutput, DenoiseMaskOutput,
@ -33,16 +34,14 @@ from invokeai.app.invocations.primitives import (
build_latents_output, build_latents_output,
) )
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
from invokeai.backend.model_management.models import ModelType, SilenceWarnings from invokeai.backend.model_manager import BaseModelType, ModelType, SilenceWarnings
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
from ...backend.model_management.lora import ModelPatcher from ...backend.model_manager.lora import ModelPatcher
from ...backend.model_management.models import BaseModelType from ...backend.model_manager.seamless import set_seamless
from ...backend.model_management.seamless import set_seamless
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import ( from ...backend.stable_diffusion.diffusers_pipeline import (
ControlNetData, ControlNetData,
@ -54,6 +53,7 @@ from ...backend.stable_diffusion.diffusers_pipeline import (
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_precision, choose_torch_device from ...backend.util.devices import choose_precision, choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
@ -63,8 +63,6 @@ from .baseinvocation import (
InvocationContext, InvocationContext,
OutputField, OutputField,
UIType, UIType,
WithMetadata,
WithWorkflow,
invocation, invocation,
invocation_output, invocation_output,
) )
@ -85,20 +83,12 @@ class SchedulerOutput(BaseInvocationOutput):
scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler) scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler)
@invocation( @invocation("scheduler", title="Scheduler", tags=["scheduler"], category="latents", version="1.0.0")
"scheduler",
title="Scheduler",
tags=["scheduler"],
category="latents",
version="1.0.0",
)
class SchedulerInvocation(BaseInvocation): class SchedulerInvocation(BaseInvocation):
"""Selects a scheduler.""" """Selects a scheduler."""
scheduler: SAMPLER_NAME_VALUES = InputField( scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
) )
def invoke(self, context: InvocationContext) -> SchedulerOutput: def invoke(self, context: InvocationContext) -> SchedulerOutput:
@ -106,11 +96,7 @@ class SchedulerInvocation(BaseInvocation):
@invocation( @invocation(
"create_denoise_mask", "create_denoise_mask", title="Create Denoise Mask", tags=["mask", "denoise"], category="latents", version="1.0.0"
title="Create Denoise Mask",
tags=["mask", "denoise"],
category="latents",
version="1.0.0",
) )
class CreateDenoiseMaskInvocation(BaseInvocation): class CreateDenoiseMaskInvocation(BaseInvocation):
"""Creates mask for denoising model run.""" """Creates mask for denoising model run."""
@ -119,11 +105,7 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1) image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1)
mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2) mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3)
fp32: bool = InputField( fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32, ui_order=4)
default=DEFAULT_PRECISION == "float32",
description=FieldDescriptions.fp32,
ui_order=4,
)
def prep_mask_tensor(self, mask_image): def prep_mask_tensor(self, mask_image):
if mask_image.mode != "L": if mask_image.mode != "L":
@ -150,8 +132,8 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
) )
if image is not None: if image is not None:
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_loader.get_model(
**self.vae.vae.model_dump(), **self.vae.vae.dict(),
context=context, context=context,
) )
@ -183,8 +165,8 @@ def get_scheduler(
seed: int, seed: int,
) -> Scheduler: ) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"]) scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.services.model_manager.get_model( orig_scheduler_info = context.services.model_loader.get_model(
**scheduler_info.model_dump(), **scheduler_info.dict(),
context=context, context=context,
) )
with orig_scheduler_info as orig_scheduler: with orig_scheduler_info as orig_scheduler:
@ -215,7 +197,7 @@ def get_scheduler(
title="Denoise Latents", title="Denoise Latents",
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"], tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
category="latents", category="latents",
version="1.4.0", version="1.3.0",
) )
class DenoiseLatentsInvocation(BaseInvocation): class DenoiseLatentsInvocation(BaseInvocation):
"""Denoises noisy latents to decodable images""" """Denoises noisy latents to decodable images"""
@ -226,64 +208,34 @@ class DenoiseLatentsInvocation(BaseInvocation):
negative_conditioning: ConditioningField = InputField( negative_conditioning: ConditioningField = InputField(
description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1 description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1
) )
noise: Optional[LatentsField] = InputField( noise: Optional[LatentsField] = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=3)
default=None,
description=FieldDescriptions.noise,
input=Input.Connection,
ui_order=3,
)
steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps) steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps)
cfg_scale: Union[float, List[float]] = InputField( cfg_scale: Union[float, List[float]] = InputField(
default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale" default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale"
) )
denoising_start: float = InputField( denoising_start: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start)
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end) denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
scheduler: SAMPLER_NAME_VALUES = InputField( scheduler: SAMPLER_NAME_VALUES = InputField(
default="euler", default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler
description=FieldDescriptions.scheduler,
ui_type=UIType.Scheduler,
) )
unet: UNetField = InputField( unet: UNetField = InputField(description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2)
description=FieldDescriptions.unet, control: Union[ControlField, list[ControlField]] = InputField(
input=Input.Connection,
title="UNet",
ui_order=2,
)
control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None, default=None,
input=Input.Connection, input=Input.Connection,
ui_order=5, ui_order=5,
) )
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField( ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField(
description=FieldDescriptions.ip_adapter, description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection, ui_order=6
title="IP-Adapter",
default=None,
input=Input.Connection,
ui_order=6,
) )
t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField( t2i_adapter: Union[T2IAdapterField, list[T2IAdapterField]] = InputField(
description=FieldDescriptions.t2i_adapter, description=FieldDescriptions.t2i_adapter, title="T2I-Adapter", default=None, input=Input.Connection, ui_order=7
title="T2I-Adapter",
default=None,
input=Input.Connection,
ui_order=7,
)
latents: Optional[LatentsField] = InputField(
default=None, description=FieldDescriptions.latents, input=Input.Connection
) )
latents: Optional[LatentsField] = InputField(description=FieldDescriptions.latents, input=Input.Connection)
denoise_mask: Optional[DenoiseMaskField] = InputField( denoise_mask: Optional[DenoiseMaskField] = InputField(
default=None, default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=8
description=FieldDescriptions.mask,
input=Input.Connection,
ui_order=8,
) )
@field_validator("cfg_scale") @validator("cfg_scale")
def ge_one(cls, v): def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1""" """validate that all cfg_scale values are >= 1"""
if isinstance(v, list): if isinstance(v, list):
@ -306,7 +258,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
stable_diffusion_step_callback( stable_diffusion_step_callback(
context=context, context=context,
intermediate_state=intermediate_state, intermediate_state=intermediate_state,
node=self.model_dump(), node=self.dict(),
source_node_id=source_node_id, source_node_id=source_node_id,
base_model=base_model, base_model=base_model,
) )
@ -409,7 +361,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
controlnet_data = [] controlnet_data = []
for control_info in control_list: for control_info in control_list:
control_model = exit_stack.enter_context( control_model = exit_stack.enter_context(
context.services.model_manager.get_model( context.services.model_loader.get_model(
model_name=control_info.control_model.model_name, model_name=control_info.control_model.model_name,
model_type=ModelType.ControlNet, model_type=ModelType.ControlNet,
base_model=control_info.control_model.base_model, base_model=control_info.control_model.base_model,
@ -477,7 +429,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
conditioning_data.ip_adapter_conditioning = [] conditioning_data.ip_adapter_conditioning = []
for single_ip_adapter in ip_adapter: for single_ip_adapter in ip_adapter:
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context( ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
context.services.model_manager.get_model( context.services.model_loader.get_model(
model_name=single_ip_adapter.ip_adapter_model.model_name, model_name=single_ip_adapter.ip_adapter_model.model_name,
model_type=ModelType.IPAdapter, model_type=ModelType.IPAdapter,
base_model=single_ip_adapter.ip_adapter_model.base_model, base_model=single_ip_adapter.ip_adapter_model.base_model,
@ -485,28 +437,22 @@ class DenoiseLatentsInvocation(BaseInvocation):
) )
) )
image_encoder_model_info = context.services.model_manager.get_model( image_encoder_model_info = context.services.model_loader.get_model(
model_name=single_ip_adapter.image_encoder_model.model_name, model_name=single_ip_adapter.image_encoder_model.model_name,
model_type=ModelType.CLIPVision, model_type=ModelType.CLIPVision,
base_model=single_ip_adapter.image_encoder_model.base_model, base_model=single_ip_adapter.image_encoder_model.base_model,
context=context, context=context,
) )
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here. input_image = context.services.images.get_pil_image(single_ip_adapter.image.image_name)
single_ipa_images = single_ip_adapter.image
if not isinstance(single_ipa_images, list):
single_ipa_images = [single_ipa_images]
single_ipa_images = [context.services.images.get_pil_image(image.image_name) for image in single_ipa_images]
# TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other # TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other
# models are needed in memory. This would help to reduce peak memory utilization in low-memory environments. # models are needed in memory. This would help to reduce peak memory utilization in low-memory environments.
with image_encoder_model_info as image_encoder_model: with image_encoder_model_info as image_encoder_model:
# Get image embeddings from CLIP and ImageProjModel. # Get image embeddings from CLIP and ImageProjModel.
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds( image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds(
single_ipa_images, image_encoder_model input_image, image_encoder_model
) )
conditioning_data.ip_adapter_conditioning.append( conditioning_data.ip_adapter_conditioning.append(
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds) IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
) )
@ -541,7 +487,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
t2i_adapter_data = [] t2i_adapter_data = []
for t2i_adapter_field in t2i_adapter: for t2i_adapter_field in t2i_adapter:
t2i_adapter_model_info = context.services.model_manager.get_model( t2i_adapter_model_info = context.services.model_loader.get_model(
model_name=t2i_adapter_field.t2i_adapter_model.model_name, model_name=t2i_adapter_field.t2i_adapter_model.model_name,
model_type=ModelType.T2IAdapter, model_type=ModelType.T2IAdapter,
base_model=t2i_adapter_field.t2i_adapter_model.base_model, base_model=t2i_adapter_field.t2i_adapter_model.base_model,
@ -681,10 +627,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets, # TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate. # below. Investigate whether this is appropriate.
t2i_adapter_data = self.run_t2i_adapters( t2i_adapter_data = self.run_t2i_adapters(
context, context, self.t2i_adapter, latents.shape, do_classifier_free_guidance=True
self.t2i_adapter,
latents.shape,
do_classifier_free_guidance=True,
) )
# Get the source node id (we are invoking the prepared node) # Get the source node id (we are invoking the prepared node)
@ -696,24 +639,23 @@ class DenoiseLatentsInvocation(BaseInvocation):
def _lora_loader(): def _lora_loader():
for lora in self.unet.loras: for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model( lora_info = context.services.model_loader.get_model(
**lora.model_dump(exclude={"weight"}), **lora.dict(exclude={"weight"}),
context=context, context=context,
) )
yield (lora_info.context.model, lora.weight) yield (lora_info.context.model, lora.weight)
del lora_info del lora_info
return return
unet_info = context.services.model_manager.get_model( unet_info = context.services.model_loader.get_model(
**self.unet.unet.model_dump(), **self.unet.unet.dict(),
context=context, context=context,
) )
with ( with (
ExitStack() as exit_stack, ExitStack() as exit_stack,
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),
set_seamless(unet_info.context.model, self.unet.seamless_axes), set_seamless(unet_info.context.model, self.unet.seamless_axes),
unet_info as unet, unet_info as unet,
# Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
): ):
latents = latents.to(device=unet.device, dtype=unet.dtype) latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None: if noise is not None:
@ -757,10 +699,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end, denoising_end=self.denoising_end,
) )
( result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
result_latents,
result_attention_map_saver,
) = pipeline.latents_from_embeddings(
latents=latents, latents=latents,
timesteps=timesteps, timesteps=timesteps,
init_timestep=init_timestep, init_timestep=init_timestep,
@ -788,13 +727,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
@invocation( @invocation(
"l2i", "l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents", version="1.0.0"
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.0.0",
) )
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow): class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents.""" """Generates an image from latents."""
latents: LatentsField = InputField( latents: LatentsField = InputField(
@ -807,13 +742,18 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
) )
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32) fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32)
metadata: CoreMetadata = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
@torch.no_grad() @torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name) latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_loader.get_model(
**self.vae.vae.model_dump(), **self.vae.vae.dict(),
context=context, context=context,
) )
@ -875,7 +815,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata, metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -889,13 +829,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"] LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
@invocation( @invocation("lresize", title="Resize Latents", tags=["latents", "resize"], category="latents", version="1.0.0")
"lresize",
title="Resize Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
)
class ResizeLatentsInvocation(BaseInvocation): class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.""" """Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
@ -941,13 +875,7 @@ class ResizeLatentsInvocation(BaseInvocation):
return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed) return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed)
@invocation( @invocation("lscale", title="Scale Latents", tags=["latents", "resize"], category="latents", version="1.0.0")
"lscale",
title="Scale Latents",
tags=["latents", "resize"],
category="latents",
version="1.0.0",
)
class ScaleLatentsInvocation(BaseInvocation): class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor.""" """Scales latents by a given factor."""
@ -986,11 +914,7 @@ class ScaleLatentsInvocation(BaseInvocation):
@invocation( @invocation(
"i2l", "i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents", version="1.0.0"
title="Image to Latents",
tags=["latents", "image", "vae", "i2l"],
category="latents",
version="1.0.0",
) )
class ImageToLatentsInvocation(BaseInvocation): class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents.""" """Encodes an image into latents."""
@ -1053,8 +977,8 @@ class ImageToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_loader.get_model(
**self.vae.vae.model_dump(), **self.vae.vae.dict(),
context=context, context=context,
) )
@ -1082,13 +1006,7 @@ class ImageToLatentsInvocation(BaseInvocation):
return vae.encode(image_tensor).latents return vae.encode(image_tensor).latents
@invocation( @invocation("lblend", title="Blend Latents", tags=["latents", "blend"], category="latents", version="1.0.0")
"lblend",
title="Blend Latents",
tags=["latents", "blend"],
category="latents",
version="1.0.0",
)
class BlendLatentsInvocation(BaseInvocation): class BlendLatentsInvocation(BaseInvocation):
"""Blend two latents using a given alpha. Latents must have same size.""" """Blend two latents using a given alpha. Latents must have same size."""

View File

@ -3,7 +3,7 @@
from typing import Literal from typing import Literal
import numpy as np import numpy as np
from pydantic import ValidationInfo, field_validator from pydantic import validator
from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput from invokeai.app.invocations.primitives import FloatOutput, IntegerOutput
@ -72,14 +72,7 @@ class RandomIntInvocation(BaseInvocation):
return IntegerOutput(value=np.random.randint(self.low, self.high)) return IntegerOutput(value=np.random.randint(self.low, self.high))
@invocation( @invocation("rand_float", title="Random Float", tags=["math", "float", "random"], category="math", version="1.0.0")
"rand_float",
title="Random Float",
tags=["math", "float", "random"],
category="math",
version="1.0.1",
use_cache=False,
)
class RandomFloatInvocation(BaseInvocation): class RandomFloatInvocation(BaseInvocation):
"""Outputs a single random float""" """Outputs a single random float"""
@ -185,13 +178,13 @@ class IntegerMathInvocation(BaseInvocation):
a: int = InputField(default=0, description=FieldDescriptions.num_1) a: int = InputField(default=0, description=FieldDescriptions.num_1)
b: int = InputField(default=0, description=FieldDescriptions.num_2) b: int = InputField(default=0, description=FieldDescriptions.num_2)
@field_validator("b") @validator("b")
def no_unrepresentable_results(cls, v: int, info: ValidationInfo): def no_unrepresentable_results(cls, v, values):
if info.data["operation"] == "DIV" and v == 0: if values["operation"] == "DIV" and v == 0:
raise ValueError("Cannot divide by zero") raise ValueError("Cannot divide by zero")
elif info.data["operation"] == "MOD" and v == 0: elif values["operation"] == "MOD" and v == 0:
raise ValueError("Cannot divide by zero") raise ValueError("Cannot divide by zero")
elif info.data["operation"] == "EXP" and v < 0: elif values["operation"] == "EXP" and v < 0:
raise ValueError("Result of exponentiation is not an integer") raise ValueError("Result of exponentiation is not an integer")
return v return v
@ -259,13 +252,13 @@ class FloatMathInvocation(BaseInvocation):
a: float = InputField(default=0, description=FieldDescriptions.num_1) a: float = InputField(default=0, description=FieldDescriptions.num_1)
b: float = InputField(default=0, description=FieldDescriptions.num_2) b: float = InputField(default=0, description=FieldDescriptions.num_2)
@field_validator("b") @validator("b")
def no_unrepresentable_results(cls, v: float, info: ValidationInfo): def no_unrepresentable_results(cls, v, values):
if info.data["operation"] == "DIV" and v == 0: if values["operation"] == "DIV" and v == 0:
raise ValueError("Cannot divide by zero") raise ValueError("Cannot divide by zero")
elif info.data["operation"] == "EXP" and info.data["a"] == 0 and v < 0: elif values["operation"] == "EXP" and values["a"] == 0 and v < 0:
raise ValueError("Cannot raise zero to a negative power") raise ValueError("Cannot raise zero to a negative power")
elif info.data["operation"] == "EXP" and type(info.data["a"] ** v) is complex: elif values["operation"] == "EXP" and type(values["a"] ** v) is complex:
raise ValueError("Root operation resulted in a complex number") raise ValueError("Root operation resulted in a complex number")
return v return v

View File

@ -1,16 +1,13 @@
from typing import Any, Literal, Optional, Union from typing import Optional
from pydantic import BaseModel, ConfigDict, Field from pydantic import Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
FieldDescriptions,
InputField, InputField,
InvocationContext, InvocationContext,
MetadataField,
OutputField, OutputField,
UIType,
invocation, invocation,
invocation_output, invocation_output,
) )
@ -19,133 +16,133 @@ from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.util.model_exclude_null import BaseModelExcludeNull
from ...version import __version__ from ...version import __version__
class MetadataItemField(BaseModel): class LoRAMetadataField(BaseModelExcludeNull):
label: str = Field(description=FieldDescriptions.metadata_item_label) """LoRA metadata for an image generated in InvokeAI."""
value: Any = Field(description=FieldDescriptions.metadata_item_value)
lora: LoRAModelField = Field(description="The LoRA model")
weight: float = Field(description="The weight of the LoRA model")
class LoRAMetadataField(BaseModel): class IPAdapterMetadataField(BaseModelExcludeNull):
"""LoRA Metadata Field"""
lora: LoRAModelField = Field(description=FieldDescriptions.lora_model)
weight: float = Field(description=FieldDescriptions.lora_weight)
class IPAdapterMetadataField(BaseModel):
"""IP Adapter Field, minus the CLIP Vision Encoder model"""
image: ImageField = Field(description="The IP-Adapter image prompt.") image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = Field( ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
description="The IP-Adapter model.", weight: float = Field(description="The weight of the IP-Adapter model")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
) )
weight: Union[float, list[float]] = Field( end_step_percent: float = Field(
description="The weight given to the IP-Adapter", default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")
@invocation_output("metadata_item_output")
class MetadataItemOutput(BaseInvocationOutput):
"""Metadata Item Output"""
item: MetadataItemField = OutputField(description="Metadata Item")
@invocation("metadata_item", title="Metadata Item", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataItemInvocation(BaseInvocation):
"""Used to create an arbitrary metadata item. Provide "label" and make a connection to "value" to store that data as the value."""
label: str = InputField(description=FieldDescriptions.metadata_item_label)
value: Any = InputField(description=FieldDescriptions.metadata_item_value, ui_type=UIType.Any)
def invoke(self, context: InvocationContext) -> MetadataItemOutput:
return MetadataItemOutput(item=MetadataItemField(label=self.label, value=self.value))
@invocation_output("metadata_output")
class MetadataOutput(BaseInvocationOutput):
metadata: MetadataField = OutputField(description="Metadata Dict")
@invocation("metadata", title="Metadata", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataInvocation(BaseInvocation):
"""Takes a MetadataItem or collection of MetadataItems and outputs a MetadataDict."""
items: Union[list[MetadataItemField], MetadataItemField] = InputField(
description=FieldDescriptions.metadata_item_polymorphic
) )
def invoke(self, context: InvocationContext) -> MetadataOutput:
if isinstance(self.items, MetadataItemField):
# single metadata item
data = {self.items.label: self.items.value}
else:
# collection of metadata items
data = {item.label: item.value for item in self.items}
# add app version class CoreMetadata(BaseModelExcludeNull):
data.update({"app_version": __version__}) """Core generation metadata for an image generated in InvokeAI."""
return MetadataOutput(metadata=MetadataField.model_validate(data))
app_version: str = Field(default=__version__, description="The version of InvokeAI used to generate this image")
@invocation("merge_metadata", title="Metadata Merge", tags=["metadata"], category="metadata", version="1.0.0") generation_mode: str = Field(
class MergeMetadataInvocation(BaseInvocation):
"""Merged a collection of MetadataDict into a single MetadataDict."""
collection: list[MetadataField] = InputField(description=FieldDescriptions.metadata_collection)
def invoke(self, context: InvocationContext) -> MetadataOutput:
data = {}
for item in self.collection:
data.update(item.model_dump())
return MetadataOutput(metadata=MetadataField.model_validate(data))
GENERATION_MODES = Literal[
"txt2img", "img2img", "inpaint", "outpaint", "sdxl_txt2img", "sdxl_img2img", "sdxl_inpaint", "sdxl_outpaint"
]
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.0")
class CoreMetadataInvocation(BaseInvocation):
"""Collects core generation metadata into a MetadataField"""
generation_mode: Optional[GENERATION_MODES] = InputField(
default=None,
description="The generation mode that output this image", description="The generation mode that output this image",
) )
positive_prompt: Optional[str] = InputField(default=None, description="The positive prompt parameter") created_by: Optional[str] = Field(description="The name of the creator of the image")
negative_prompt: Optional[str] = InputField(default=None, description="The negative prompt parameter") positive_prompt: str = Field(description="The positive prompt parameter")
width: Optional[int] = InputField(default=None, description="The width parameter") negative_prompt: str = Field(description="The negative prompt parameter")
height: Optional[int] = InputField(default=None, description="The height parameter") width: int = Field(description="The width parameter")
seed: Optional[int] = InputField(default=None, description="The seed used for noise generation") height: int = Field(description="The height parameter")
rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation") seed: int = Field(description="The seed used for noise generation")
cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter") rand_device: str = Field(description="The device used for random number generation")
steps: Optional[int] = InputField(default=None, description="The number of steps used for inference") cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference") steps: int = Field(description="The number of steps used for inference")
seamless_x: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the X axis") scheduler: str = Field(description="The scheduler used for inference")
seamless_y: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the Y axis") clip_skip: Optional[int] = Field(
clip_skip: Optional[int] = InputField(
default=None, default=None,
description="The number of skipped CLIP layers", description="The number of skipped CLIP layers",
) )
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference") model: MainModelField = Field(description="The main model used for inference")
controlnets: Optional[list[ControlField]] = InputField( controlnets: list[ControlField] = Field(description="The ControlNets used for inference")
default=None, description="The ControlNets used for inference" ipAdapters: list[IPAdapterMetadataField] = Field(description="The IP Adapters used for inference")
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
vae: Optional[VAEModelField] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
) )
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference" # Latents-to-Latents
strength: Optional[float] = Field(
default=None,
description="The strength used for latents-to-latents",
) )
t2iAdapters: Optional[list[T2IAdapterField]] = InputField( init_image: Optional[str] = Field(default=None, description="The name of the initial image")
default=None, description="The IP Adapters used for inference"
# SDXL
positive_style_prompt: Optional[str] = Field(default=None, description="The positive style prompt parameter")
negative_style_prompt: Optional[str] = Field(default=None, description="The negative style prompt parameter")
# SDXL Refiner
refiner_model: Optional[MainModelField] = Field(default=None, description="The SDXL Refiner model used")
refiner_cfg_scale: Optional[float] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
) )
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference") refiner_steps: Optional[int] = Field(default=None, description="The number of steps used for the refiner")
refiner_scheduler: Optional[str] = Field(default=None, description="The scheduler used for the refiner")
refiner_positive_aesthetic_score: Optional[float] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_negative_aesthetic_score: Optional[float] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Optional[float] = Field(default=None, description="The start value used for refiner denoising")
class ImageMetadata(BaseModelExcludeNull):
"""An image's generation metadata"""
metadata: Optional[dict] = Field(
default=None,
description="The image's core metadata, if it was created in the Linear or Canvas UI",
)
graph: Optional[dict] = Field(default=None, description="The graph that created the image")
@invocation_output("metadata_accumulator_output")
class MetadataAccumulatorOutput(BaseInvocationOutput):
"""The output of the MetadataAccumulator node"""
metadata: CoreMetadata = OutputField(description="The core metadata for the image")
@invocation(
"metadata_accumulator", title="Metadata Accumulator", tags=["metadata"], category="metadata", version="1.0.0"
)
class MetadataAccumulatorInvocation(BaseInvocation):
"""Outputs a Core Metadata Object"""
generation_mode: str = InputField(
description="The generation mode that output this image",
)
positive_prompt: str = InputField(description="The positive prompt parameter")
negative_prompt: str = InputField(description="The negative prompt parameter")
width: int = InputField(description="The width parameter")
height: int = InputField(description="The height parameter")
seed: int = InputField(description="The seed used for noise generation")
rand_device: str = InputField(description="The device used for random number generation")
cfg_scale: float = InputField(description="The classifier-free guidance scale parameter")
steps: int = InputField(description="The number of steps used for inference")
scheduler: str = InputField(description="The scheduler used for inference")
clip_skip: Optional[int] = Field(
default=None,
description="The number of skipped CLIP layers",
)
model: MainModelField = InputField(description="The main model used for inference")
controlnets: list[ControlField] = InputField(description="The ControlNets used for inference")
ipAdapters: list[IPAdapterMetadataField] = InputField(description="The IP Adapters used for inference")
t2iAdapters: list[T2IAdapterField] = Field(description="The IP Adapters used for inference")
loras: list[LoRAMetadataField] = InputField(description="The LoRAs used for inference")
strength: Optional[float] = InputField( strength: Optional[float] = InputField(
default=None, default=None,
description="The strength used for latents-to-latents", description="The strength used for latents-to-latents",
@ -159,20 +156,6 @@ class CoreMetadataInvocation(BaseInvocation):
description="The VAE used for decoding, if the main model's default was not used", description="The VAE used for decoding, if the main model's default was not used",
) )
# High resolution fix metadata.
hrf_width: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
)
hrf_height: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
)
hrf_strength: Optional[float] = InputField(
default=None,
description="The high resolution fix img2img strength used in the upscale pass.",
)
# SDXL # SDXL
positive_style_prompt: Optional[str] = InputField( positive_style_prompt: Optional[str] = InputField(
default=None, default=None,
@ -213,13 +196,7 @@ class CoreMetadataInvocation(BaseInvocation):
description="The start value used for refiner denoising", description="The start value used for refiner denoising",
) )
def invoke(self, context: InvocationContext) -> MetadataOutput: def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object""" """Collects and outputs a CoreMetadata object"""
return MetadataOutput( return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))
metadata=MetadataField.model_validate(
self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
)
)
model_config = ConfigDict(extra="allow")

View File

@ -1,9 +1,10 @@
import copy import copy
from typing import List, Optional from typing import List, Optional
from pydantic import BaseModel, ConfigDict, Field from pydantic import BaseModel, Field
from invokeai.backend.model_manager import SubModelType
from ...backend.model_management import BaseModelType, ModelType, SubModelType
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
@ -19,13 +20,9 @@ from .baseinvocation import (
class ModelInfo(BaseModel): class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load submodel") key: str = Field(description="Unique ID for model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Info to load submodel")
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel") submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
model_config = ConfigDict(protected_namespaces=())
class LoraInfo(ModelInfo): class LoraInfo(ModelInfo):
weight: float = Field(description="Lora's weight which to use when apply to model") weight: float = Field(description="Lora's weight which to use when apply to model")
@ -63,29 +60,16 @@ class ModelLoaderOutput(BaseInvocationOutput):
class MainModelField(BaseModel): class MainModelField(BaseModel):
"""Main model field""" """Main model field"""
model_name: str = Field(description="Name of the model") key: str = Field(description="Unique ID of the model")
base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
class LoRAModelField(BaseModel): class LoRAModelField(BaseModel):
"""LoRA model field""" """LoRA model field"""
model_name: str = Field(description="Name of the LoRA model") key: str = Field(description="Unique ID for model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation( @invocation("main_model_loader", title="Main Model", tags=["model"], category="model", version="1.0.0")
"main_model_loader",
title="Main Model",
tags=["model"],
category="model",
version="1.0.0",
)
class MainModelLoaderInvocation(BaseInvocation): class MainModelLoaderInvocation(BaseInvocation):
"""Loads a main model, outputting its submodels.""" """Loads a main model, outputting its submodels."""
@ -93,20 +77,15 @@ class MainModelLoaderInvocation(BaseInvocation):
# TODO: precision? # TODO: precision?
def invoke(self, context: InvocationContext) -> ModelLoaderOutput: def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
base_model = self.model.base_model """Load a main model, outputting its submodels."""
model_name = self.model.model_name key = self.model.key
model_type = ModelType.Main
# TODO: not found exceptions # TODO: not found exceptions
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(key):
model_name=model_name, raise Exception(f"Unknown model {key}")
base_model=base_model,
model_type=model_type,
):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
""" """
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=self.model_name, model_name=self.model_name,
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer, submodel=SDModelType.Tokenizer,
@ -115,7 +94,7 @@ class MainModelLoaderInvocation(BaseInvocation):
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted" f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
) )
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=self.model_name, model_name=self.model_name,
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder, submodel=SDModelType.TextEncoder,
@ -124,7 +103,7 @@ class MainModelLoaderInvocation(BaseInvocation):
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted" f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
) )
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=self.model_name, model_name=self.model_name,
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet, submodel=SDModelType.UNet,
@ -137,30 +116,22 @@ class MainModelLoaderInvocation(BaseInvocation):
return ModelLoaderOutput( return ModelLoaderOutput(
unet=UNetField( unet=UNetField(
unet=ModelInfo( unet=ModelInfo(
model_name=model_name, key=key,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.UNet, submodel=SubModelType.UNet,
), ),
scheduler=ModelInfo( scheduler=ModelInfo(
model_name=model_name, key=key,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Scheduler, submodel=SubModelType.Scheduler,
), ),
loras=[], loras=[],
), ),
clip=ClipField( clip=ClipField(
tokenizer=ModelInfo( tokenizer=ModelInfo(
model_name=model_name, key=key,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Tokenizer, submodel=SubModelType.Tokenizer,
), ),
text_encoder=ModelInfo( text_encoder=ModelInfo(
model_name=model_name, key=key,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.TextEncoder, submodel=SubModelType.TextEncoder,
), ),
loras=[], loras=[],
@ -168,9 +139,7 @@ class MainModelLoaderInvocation(BaseInvocation):
), ),
vae=VaeField( vae=VaeField(
vae=ModelInfo( vae=ModelInfo(
model_name=model_name, key=key,
base_model=base_model,
model_type=model_type,
submodel=SubModelType.Vae, submodel=SubModelType.Vae,
), ),
), ),
@ -179,7 +148,7 @@ class MainModelLoaderInvocation(BaseInvocation):
@invocation_output("lora_loader_output") @invocation_output("lora_loader_output")
class LoraLoaderOutput(BaseInvocationOutput): class LoraLoaderOutput(BaseInvocationOutput):
"""Model loader output""" """Model loader output."""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet") unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP") clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
@ -192,37 +161,27 @@ class LoraLoaderInvocation(BaseInvocation):
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA") lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight) weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField( unet: Optional[UNetField] = InputField(
default=None, default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
) )
clip: Optional[ClipField] = InputField( clip: Optional[ClipField] = InputField(
default=None, default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP"
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP",
) )
def invoke(self, context: InvocationContext) -> LoraLoaderOutput: def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
"""Load a LoRA model."""
if self.lora is None: if self.lora is None:
raise Exception("No LoRA provided") raise Exception("No LoRA provided")
base_model = self.lora.base_model key = self.lora.key
lora_name = self.lora.model_name
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(key):
base_model=base_model, raise Exception(f"Unknown lora: {key}!")
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unkown lora name: {lora_name}!")
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras): if self.unet is not None and any(lora.key == key for lora in self.unet.loras):
raise Exception(f'Lora "{lora_name}" already applied to unet') raise Exception(f'Lora "{key}" already applied to unet')
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras): if self.clip is not None and any(lora.key == key for lora in self.clip.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip') raise Exception(f'Lora "{key}" already applied to clip')
output = LoraLoaderOutput() output = LoraLoaderOutput()
@ -230,9 +189,7 @@ class LoraLoaderInvocation(BaseInvocation):
output.unet = copy.deepcopy(self.unet) output.unet = copy.deepcopy(self.unet)
output.unet.loras.append( output.unet.loras.append(
LoraInfo( LoraInfo(
base_model=base_model, key=key,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None, submodel=None,
weight=self.weight, weight=self.weight,
) )
@ -242,9 +199,7 @@ class LoraLoaderInvocation(BaseInvocation):
output.clip = copy.deepcopy(self.clip) output.clip = copy.deepcopy(self.clip)
output.clip.loras.append( output.clip.loras.append(
LoraInfo( LoraInfo(
base_model=base_model, key=key,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None, submodel=None,
weight=self.weight, weight=self.weight,
) )
@ -255,66 +210,46 @@ class LoraLoaderInvocation(BaseInvocation):
@invocation_output("sdxl_lora_loader_output") @invocation_output("sdxl_lora_loader_output")
class SDXLLoraLoaderOutput(BaseInvocationOutput): class SDXLLoraLoaderOutput(BaseInvocationOutput):
"""SDXL LoRA Loader Output""" """SDXL LoRA Loader Output."""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet") unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1") clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2") clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
@invocation( @invocation("sdxl_lora_loader", title="SDXL LoRA", tags=["lora", "model"], category="model", version="1.0.0")
"sdxl_lora_loader",
title="SDXL LoRA",
tags=["lora", "model"],
category="model",
version="1.0.0",
)
class SDXLLoraLoaderInvocation(BaseInvocation): class SDXLLoraLoaderInvocation(BaseInvocation):
"""Apply selected lora to unet and text_encoder.""" """Apply selected lora to unet and text_encoder."""
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA") lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight) weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
unet: Optional[UNetField] = InputField( unet: Optional[UNetField] = InputField(
default=None, default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
) )
clip: Optional[ClipField] = InputField( clip: Optional[ClipField] = InputField(
default=None, default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1"
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 1",
) )
clip2: Optional[ClipField] = InputField( clip2: Optional[ClipField] = InputField(
default=None, default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2"
description=FieldDescriptions.clip,
input=Input.Connection,
title="CLIP 2",
) )
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput: def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
"""Load an SDXL LoRA."""
if self.lora is None: if self.lora is None:
raise Exception("No LoRA provided") raise Exception("No LoRA provided")
base_model = self.lora.base_model key = self.lora.key
lora_name = self.lora.model_name if not context.services.model_record_store.model_exists(key):
raise Exception(f"Unknown lora name: {key}!")
if not context.services.model_manager.model_exists( if self.unet is not None and any(lora.key == key for lora in self.unet.loras):
base_model=base_model, raise Exception(f'Lora "{key}" already applied to unet')
model_name=lora_name,
model_type=ModelType.Lora,
):
raise Exception(f"Unknown lora name: {lora_name}!")
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras): if self.clip is not None and any(lora.key == key for lora in self.clip.loras):
raise Exception(f'Lora "{lora_name}" already applied to unet') raise Exception(f'Lora "{key}" already applied to clip')
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras): if self.clip2 is not None and any(lora.key == key for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip') raise Exception(f'Lora "{key}" already applied to clip2')
if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras):
raise Exception(f'Lora "{lora_name}" already applied to clip2')
output = SDXLLoraLoaderOutput() output = SDXLLoraLoaderOutput()
@ -322,9 +257,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
output.unet = copy.deepcopy(self.unet) output.unet = copy.deepcopy(self.unet)
output.unet.loras.append( output.unet.loras.append(
LoraInfo( LoraInfo(
base_model=base_model, key=key,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None, submodel=None,
weight=self.weight, weight=self.weight,
) )
@ -334,9 +267,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
output.clip = copy.deepcopy(self.clip) output.clip = copy.deepcopy(self.clip)
output.clip.loras.append( output.clip.loras.append(
LoraInfo( LoraInfo(
base_model=base_model, key=key,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None, submodel=None,
weight=self.weight, weight=self.weight,
) )
@ -346,9 +277,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
output.clip2 = copy.deepcopy(self.clip2) output.clip2 = copy.deepcopy(self.clip2)
output.clip2.loras.append( output.clip2.loras.append(
LoraInfo( LoraInfo(
base_model=base_model, key=key,
model_name=lora_name,
model_type=ModelType.Lora,
submodel=None, submodel=None,
weight=self.weight, weight=self.weight,
) )
@ -358,12 +287,9 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
class VAEModelField(BaseModel): class VAEModelField(BaseModel):
"""Vae model field""" """Vae model field."""
model_name: str = Field(description="Name of the model") key: str = Field(description="Unique ID for VAE model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
@invocation_output("vae_loader_output") @invocation_output("vae_loader_output")
@ -375,32 +301,22 @@ class VaeLoaderOutput(BaseInvocationOutput):
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0") @invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.0")
class VaeLoaderInvocation(BaseInvocation): class VaeLoaderInvocation(BaseInvocation):
"""Loads a VAE model, outputting a VaeLoaderOutput""" """Loads a VAE model, outputting a VaeLoaderOutput."""
vae_model: VAEModelField = InputField( vae_model: VAEModelField = InputField(
description=FieldDescriptions.vae_model, description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE"
input=Input.Direct,
ui_type=UIType.VaeModel,
title="VAE",
) )
def invoke(self, context: InvocationContext) -> VaeLoaderOutput: def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
base_model = self.vae_model.base_model """Load a VAE model."""
model_name = self.vae_model.model_name key = self.vae_model.key
model_type = ModelType.Vae
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(key):
base_model=base_model, raise Exception(f"Unkown vae name: {key}!")
model_name=model_name,
model_type=model_type,
):
raise Exception(f"Unkown vae name: {model_name}!")
return VaeLoaderOutput( return VaeLoaderOutput(
vae=VaeField( vae=VaeField(
vae=ModelInfo( vae=ModelInfo(
model_name=model_name, key=key,
base_model=base_model,
model_type=model_type,
) )
) )
) )
@ -408,38 +324,27 @@ class VaeLoaderInvocation(BaseInvocation):
@invocation_output("seamless_output") @invocation_output("seamless_output")
class SeamlessModeOutput(BaseInvocationOutput): class SeamlessModeOutput(BaseInvocationOutput):
"""Modified Seamless Model output""" """Modified Seamless Model output."""
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet") unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(default=None, description=FieldDescriptions.vae, title="VAE") vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
@invocation( @invocation("seamless", title="Seamless", tags=["seamless", "model"], category="model", version="1.0.0")
"seamless",
title="Seamless",
tags=["seamless", "model"],
category="model",
version="1.0.0",
)
class SeamlessModeInvocation(BaseInvocation): class SeamlessModeInvocation(BaseInvocation):
"""Applies the seamless transformation to the Model UNet and VAE.""" """Applies the seamless transformation to the Model UNet and VAE."""
unet: Optional[UNetField] = InputField( unet: Optional[UNetField] = InputField(
default=None, default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
description=FieldDescriptions.unet,
input=Input.Connection,
title="UNet",
) )
vae: Optional[VaeField] = InputField( vae: Optional[VaeField] = InputField(
default=None, default=None, description=FieldDescriptions.vae_model, input=Input.Connection, title="VAE"
description=FieldDescriptions.vae_model,
input=Input.Connection,
title="VAE",
) )
seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless") seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless")
seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless") seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless")
def invoke(self, context: InvocationContext) -> SeamlessModeOutput: def invoke(self, context: InvocationContext) -> SeamlessModeOutput:
"""Apply seamless transformation."""
# Conditionally append 'x' and 'y' based on seamless_x and seamless_y # Conditionally append 'x' and 'y' based on seamless_x and seamless_y
unet = copy.deepcopy(self.unet) unet = copy.deepcopy(self.unet)
vae = copy.deepcopy(self.vae) vae = copy.deepcopy(self.vae)

View File

@ -2,7 +2,7 @@
import torch import torch
from pydantic import field_validator from pydantic import validator
from invokeai.app.invocations.latent import LatentsField from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.misc import SEED_MAX, get_random_seed
@ -65,7 +65,7 @@ Nodes
class NoiseOutput(BaseInvocationOutput): class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output""" """Invocation noise output"""
noise: LatentsField = OutputField(description=FieldDescriptions.noise) noise: LatentsField = OutputField(default=None, description=FieldDescriptions.noise)
width: int = OutputField(description=FieldDescriptions.width) width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height) height: int = OutputField(description=FieldDescriptions.height)
@ -78,13 +78,7 @@ def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
) )
@invocation( @invocation("noise", title="Noise", tags=["latents", "noise"], category="latents", version="1.0.0")
"noise",
title="Noise",
tags=["latents", "noise"],
category="latents",
version="1.0.0",
)
class NoiseInvocation(BaseInvocation): class NoiseInvocation(BaseInvocation):
"""Generates latent noise.""" """Generates latent noise."""
@ -111,7 +105,7 @@ class NoiseInvocation(BaseInvocation):
description="Use CPU for noise generation (for reproducible results across platforms)", description="Use CPU for noise generation (for reproducible results across platforms)",
) )
@field_validator("seed", mode="before") @validator("seed", pre=True)
def modulo_seed(cls, v): def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range.""" """Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1) return v % (SEED_MAX + 1)

View File

@ -4,22 +4,23 @@ import inspect
import re import re
# from contextlib import ExitStack # from contextlib import ExitStack
from typing import List, Literal, Union from typing import List, Literal, Optional, Union
import numpy as np import numpy as np
import torch import torch
from diffusers.image_processor import VaeImageProcessor from diffusers.image_processor import VaeImageProcessor
from pydantic import BaseModel, ConfigDict, Field, field_validator from pydantic import BaseModel, Field, validator
from tqdm import tqdm from tqdm import tqdm
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend import BaseModelType, ModelType, SubModelType from invokeai.backend import BaseModelType, ModelType, SubModelType
from ...backend.model_management import ONNXModelPatcher from ...backend.model_manager.lora import ONNXModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.util import choose_torch_device from ...backend.util import choose_torch_device
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
@ -30,8 +31,6 @@ from .baseinvocation import (
OutputField, OutputField,
UIComponent, UIComponent,
UIType, UIType,
WithMetadata,
WithWorkflow,
invocation, invocation,
invocation_output, invocation_output,
) )
@ -63,18 +62,15 @@ class ONNXPromptInvocation(BaseInvocation):
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection) clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection)
def invoke(self, context: InvocationContext) -> ConditioningOutput: def invoke(self, context: InvocationContext) -> ConditioningOutput:
tokenizer_info = context.services.model_manager.get_model( tokenizer_info = context.services.model_loader.get_model(
**self.clip.tokenizer.model_dump(), **self.clip.tokenizer.dict(),
) )
text_encoder_info = context.services.model_manager.get_model( text_encoder_info = context.services.model_loader.get_model(
**self.clip.text_encoder.model_dump(), **self.clip.text_encoder.dict(),
) )
with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack: with tokenizer_info as orig_tokenizer, text_encoder_info as text_encoder: # , ExitStack() as stack:
loras = [ loras = [
( (context.services.model_loader.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.clip.loras for lora in self.clip.loras
] ]
@ -85,7 +81,7 @@ class ONNXPromptInvocation(BaseInvocation):
ti_list.append( ti_list.append(
( (
name, name,
context.services.model_manager.get_model( context.services.model_loader.get_model(
model_name=name, model_name=name,
base_model=self.clip.text_encoder.base_model, base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion, model_type=ModelType.TextualInversion,
@ -179,14 +175,14 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
description=FieldDescriptions.unet, description=FieldDescriptions.unet,
input=Input.Connection, input=Input.Connection,
) )
control: Union[ControlField, list[ControlField]] = InputField( control: Optional[Union[ControlField, list[ControlField]]] = InputField(
default=None, default=None,
description=FieldDescriptions.control, description=FieldDescriptions.control,
) )
# seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", ) # seamless: bool = InputField(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'") # seamless_axes: str = InputField(default="", description="The axes to tile the image on, 'x' and/or 'y'")
@field_validator("cfg_scale") @validator("cfg_scale")
def ge_one(cls, v): def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1""" """validate that all cfg_scale values are >= 1"""
if isinstance(v, list): if isinstance(v, list):
@ -245,7 +241,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
stable_diffusion_step_callback( stable_diffusion_step_callback(
context=context, context=context,
intermediate_state=intermediate_state, intermediate_state=intermediate_state,
node=self.model_dump(), node=self.dict(),
source_node_id=source_node_id, source_node_id=source_node_id,
) )
@ -258,15 +254,12 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
eta=0.0, eta=0.0,
) )
unet_info = context.services.model_manager.get_model(**self.unet.unet.model_dump()) unet_info = context.services.model_loader.get_model(**self.unet.unet.dict())
with unet_info as unet: # , ExitStack() as stack: with unet_info as unet: # , ExitStack() as stack:
# loras = [(stack.enter_context(context.services.model_manager.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras] # loras = [(stack.enter_context(context.services.model_loader.get_model(**lora.dict(exclude={"weight"}))), lora.weight) for lora in self.unet.loras]
loras = [ loras = [
( (context.services.model_loader.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight)
context.services.model_manager.get_model(**lora.model_dump(exclude={"weight"})).context.model,
lora.weight,
)
for lora in self.unet.loras for lora in self.unet.loras
] ]
@ -328,7 +321,7 @@ class ONNXTextToLatentsInvocation(BaseInvocation):
category="image", category="image",
version="1.0.0", version="1.0.0",
) )
class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow): class ONNXLatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents.""" """Generates an image from latents."""
latents: LatentsField = InputField( latents: LatentsField = InputField(
@ -339,6 +332,11 @@ class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
description=FieldDescriptions.vae, description=FieldDescriptions.vae,
input=Input.Connection, input=Input.Connection,
) )
metadata: Optional[CoreMetadata] = InputField(
default=None,
description=FieldDescriptions.core_metadata,
ui_hidden=True,
)
# tiled: bool = InputField(default=False, description="Decode latents by overlaping tiles(less memory consumption)") # tiled: bool = InputField(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
@ -347,8 +345,8 @@ class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
if self.vae.vae.submodel != SubModelType.VaeDecoder: if self.vae.vae.submodel != SubModelType.VaeDecoder:
raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}") raise Exception(f"Expected vae_decoder, found: {self.vae.vae.model_type}")
vae_info = context.services.model_manager.get_model( vae_info = context.services.model_loader.get_model(
**self.vae.vae.model_dump(), **self.vae.vae.dict(),
) )
# clear memory as vae decode can request a lot # clear memory as vae decode can request a lot
@ -377,7 +375,7 @@ class ONNXLatentsToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata, metadata=self.metadata.dict() if self.metadata else None,
workflow=self.workflow, workflow=self.workflow,
) )
@ -405,8 +403,6 @@ class OnnxModelField(BaseModel):
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_type: ModelType = Field(description="Model Type") model_type: ModelType = Field(description="Model Type")
model_config = ConfigDict(protected_namespaces=())
@invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0") @invocation("onnx_model_loader", title="ONNX Main Model", tags=["onnx", "model"], category="model", version="1.0.0")
class OnnxModelLoaderInvocation(BaseInvocation): class OnnxModelLoaderInvocation(BaseInvocation):
@ -422,7 +418,7 @@ class OnnxModelLoaderInvocation(BaseInvocation):
model_type = ModelType.ONNX model_type = ModelType.ONNX
# TODO: not found exceptions # TODO: not found exceptions
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=model_name, model_name=model_name,
base_model=base_model, base_model=base_model,
model_type=model_type, model_type=model_type,
@ -430,7 +426,7 @@ class OnnxModelLoaderInvocation(BaseInvocation):
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}") raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
""" """
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=self.model_name, model_name=self.model_name,
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.Tokenizer, submodel=SDModelType.Tokenizer,
@ -439,7 +435,7 @@ class OnnxModelLoaderInvocation(BaseInvocation):
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted" f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
) )
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=self.model_name, model_name=self.model_name,
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.TextEncoder, submodel=SDModelType.TextEncoder,
@ -448,7 +444,7 @@ class OnnxModelLoaderInvocation(BaseInvocation):
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted" f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
) )
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=self.model_name, model_name=self.model_name,
model_type=SDModelType.Diffusers, model_type=SDModelType.Diffusers,
submodel=SDModelType.UNet, submodel=SDModelType.UNet,

View File

@ -44,22 +44,13 @@ from invokeai.app.invocations.primitives import FloatCollectionOutput
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
@invocation( @invocation("float_range", title="Float Range", tags=["math", "range"], category="math", version="1.0.0")
"float_range",
title="Float Range",
tags=["math", "range"],
category="math",
version="1.0.0",
)
class FloatLinearRangeInvocation(BaseInvocation): class FloatLinearRangeInvocation(BaseInvocation):
"""Creates a range""" """Creates a range"""
start: float = InputField(default=5, description="The first value of the range") start: float = InputField(default=5, description="The first value of the range")
stop: float = InputField(default=10, description="The last value of the range") stop: float = InputField(default=10, description="The last value of the range")
steps: int = InputField( steps: int = InputField(default=30, description="number of values to interpolate over (including start and stop)")
default=30,
description="number of values to interpolate over (including start and stop)",
)
def invoke(self, context: InvocationContext) -> FloatCollectionOutput: def invoke(self, context: InvocationContext) -> FloatCollectionOutput:
param_list = list(np.linspace(self.start, self.stop, self.steps)) param_list = list(np.linspace(self.start, self.stop, self.steps))
@ -104,13 +95,7 @@ EASING_FUNCTION_KEYS = Literal[tuple(list(EASING_FUNCTIONS_MAP.keys()))]
# actually I think for now could just use CollectionOutput (which is list[Any] # actually I think for now could just use CollectionOutput (which is list[Any]
@invocation( @invocation("step_param_easing", title="Step Param Easing", tags=["step", "easing"], category="step", version="1.0.0")
"step_param_easing",
title="Step Param Easing",
tags=["step", "easing"],
category="step",
version="1.0.0",
)
class StepParamEasingInvocation(BaseInvocation): class StepParamEasingInvocation(BaseInvocation):
"""Experimental per-step parameter easing for denoising steps""" """Experimental per-step parameter easing for denoising steps"""
@ -174,9 +159,7 @@ class StepParamEasingInvocation(BaseInvocation):
context.services.logger.debug("base easing duration: " + str(base_easing_duration)) context.services.logger.debug("base easing duration: " + str(base_easing_duration))
even_num_steps = num_easing_steps % 2 == 0 # even number of steps even_num_steps = num_easing_steps % 2 == 0 # even number of steps
easing_function = easing_class( easing_function = easing_class(
start=self.start_value, start=self.start_value, end=self.end_value, duration=base_easing_duration - 1
end=self.end_value,
duration=base_easing_duration - 1,
) )
base_easing_vals = list() base_easing_vals = list()
for step_index in range(base_easing_duration): for step_index in range(base_easing_duration):
@ -216,11 +199,7 @@ class StepParamEasingInvocation(BaseInvocation):
# #
else: # no mirroring (default) else: # no mirroring (default)
easing_function = easing_class( easing_function = easing_class(start=self.start_value, end=self.end_value, duration=num_easing_steps - 1)
start=self.start_value,
end=self.end_value,
duration=num_easing_steps - 1,
)
for step_index in range(num_easing_steps): for step_index in range(num_easing_steps):
step_val = easing_function.ease(step_index) step_val = easing_function.ease(step_index)
easing_list.append(step_val) easing_list.append(step_val)

View File

@ -251,9 +251,7 @@ class ImageCollectionOutput(BaseInvocationOutput):
@invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.0") @invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.0")
class ImageInvocation( class ImageInvocation(BaseInvocation):
BaseInvocation,
):
"""An image primitive value""" """An image primitive value"""
image: ImageField = InputField(description="The image to load") image: ImageField = InputField(description="The image to load")
@ -293,7 +291,7 @@ class DenoiseMaskField(BaseModel):
"""An inpaint mask field""" """An inpaint mask field"""
mask_name: str = Field(description="The name of the mask image") mask_name: str = Field(description="The name of the mask image")
masked_latents_name: Optional[str] = Field(default=None, description="The name of the masked image latents") masked_latents_name: Optional[str] = Field(description="The name of the masked image latents")
@invocation_output("denoise_mask_output") @invocation_output("denoise_mask_output")

View File

@ -3,7 +3,7 @@ from typing import Optional, Union
import numpy as np import numpy as np
from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator from dynamicprompts.generators import CombinatorialPromptGenerator, RandomPromptGenerator
from pydantic import field_validator from pydantic import validator
from invokeai.app.invocations.primitives import StringCollectionOutput from invokeai.app.invocations.primitives import StringCollectionOutput
@ -21,10 +21,7 @@ from .baseinvocation import BaseInvocation, InputField, InvocationContext, UICom
class DynamicPromptInvocation(BaseInvocation): class DynamicPromptInvocation(BaseInvocation):
"""Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator""" """Parses a prompt using adieyal/dynamicprompts' random or combinatorial generator"""
prompt: str = InputField( prompt: str = InputField(description="The prompt to parse with dynamicprompts", ui_component=UIComponent.Textarea)
description="The prompt to parse with dynamicprompts",
ui_component=UIComponent.Textarea,
)
max_prompts: int = InputField(default=1, description="The number of prompts to generate") max_prompts: int = InputField(default=1, description="The number of prompts to generate")
combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator") combinatorial: bool = InputField(default=False, description="Whether to use the combinatorial generator")
@ -39,31 +36,21 @@ class DynamicPromptInvocation(BaseInvocation):
return StringCollectionOutput(collection=prompts) return StringCollectionOutput(collection=prompts)
@invocation( @invocation("prompt_from_file", title="Prompts from File", tags=["prompt", "file"], category="prompt", version="1.0.0")
"prompt_from_file",
title="Prompts from File",
tags=["prompt", "file"],
category="prompt",
version="1.0.0",
)
class PromptsFromFileInvocation(BaseInvocation): class PromptsFromFileInvocation(BaseInvocation):
"""Loads prompts from a text file""" """Loads prompts from a text file"""
file_path: str = InputField(description="Path to prompt text file") file_path: str = InputField(description="Path to prompt text file")
pre_prompt: Optional[str] = InputField( pre_prompt: Optional[str] = InputField(
default=None, default=None, description="String to prepend to each prompt", ui_component=UIComponent.Textarea
description="String to prepend to each prompt",
ui_component=UIComponent.Textarea,
) )
post_prompt: Optional[str] = InputField( post_prompt: Optional[str] = InputField(
default=None, default=None, description="String to append to each prompt", ui_component=UIComponent.Textarea
description="String to append to each prompt",
ui_component=UIComponent.Textarea,
) )
start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from") start_line: int = InputField(default=1, ge=1, description="Line in the file to start start from")
max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)") max_prompts: int = InputField(default=1, ge=0, description="Max lines to read from file (0=all)")
@field_validator("file_path") @validator("file_path")
def file_path_exists(cls, v): def file_path_exists(cls, v):
if not exists(v): if not exists(v):
raise ValueError(FileNotFoundError) raise ValueError(FileNotFoundError)
@ -92,10 +79,6 @@ class PromptsFromFileInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> StringCollectionOutput: def invoke(self, context: InvocationContext) -> StringCollectionOutput:
prompts = self.promptsFromFile( prompts = self.promptsFromFile(
self.file_path, self.file_path, self.pre_prompt, self.post_prompt, self.start_line, self.max_prompts
self.pre_prompt,
self.post_prompt,
self.start_line,
self.max_prompts,
) )
return StringCollectionOutput(collection=prompts) return StringCollectionOutput(collection=prompts)

View File

@ -1,4 +1,4 @@
from ...backend.model_management import ModelType, SubModelType from ...backend.model_manager import ModelType, SubModelType
from .baseinvocation import ( from .baseinvocation import (
BaseInvocation, BaseInvocation,
BaseInvocationOutput, BaseInvocationOutput,
@ -48,7 +48,7 @@ class SDXLModelLoaderInvocation(BaseInvocation):
model_type = ModelType.Main model_type = ModelType.Main
# TODO: not found exceptions # TODO: not found exceptions
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=model_name, model_name=model_name,
base_model=base_model, base_model=base_model,
model_type=model_type, model_type=model_type,
@ -137,7 +137,7 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
model_type = ModelType.Main model_type = ModelType.Main
# TODO: not found exceptions # TODO: not found exceptions
if not context.services.model_manager.model_exists( if not context.services.model_record_store.model_exists(
model_name=model_name, model_name=model_name,
base_model=base_model, base_model=base_model,
model_type=model_type, model_type=model_type,

View File

@ -1,6 +1,6 @@
from typing import Union from typing import Union
from pydantic import BaseModel, ConfigDict, Field from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import ( from invokeai.app.invocations.baseinvocation import (
BaseInvocation, BaseInvocation,
@ -16,15 +16,13 @@ from invokeai.app.invocations.baseinvocation import (
) )
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.primitives import ImageField
from invokeai.backend.model_management.models.base import BaseModelType from invokeai.backend.model_manager import BaseModelType
class T2IAdapterModelField(BaseModel): class T2IAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the T2I-Adapter model") model_name: str = Field(description="Name of the T2I-Adapter model")
base_model: BaseModelType = Field(description="Base model") base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
class T2IAdapterField(BaseModel): class T2IAdapterField(BaseModel):
image: ImageField = Field(description="The T2I-Adapter image prompt.") image: ImageField = Field(description="The T2I-Adapter image prompt.")

View File

@ -7,14 +7,13 @@ import numpy as np
import torch import torch
from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image from PIL import Image
from pydantic import ConfigDict
from realesrgan import RealESRGANer from realesrgan import RealESRGANer
from invokeai.app.invocations.primitives import ImageField, ImageOutput from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin from invokeai.app.models.image import ImageCategory, ResourceOrigin
from invokeai.backend.util.devices import choose_torch_device from invokeai.backend.util.devices import choose_torch_device
from .baseinvocation import BaseInvocation, InputField, InvocationContext, WithMetadata, WithWorkflow, invocation from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
# TODO: Populate this from disk? # TODO: Populate this from disk?
# TODO: Use model manager to load? # TODO: Use model manager to load?
@ -30,7 +29,7 @@ if choose_torch_device() == torch.device("mps"):
@invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.1.0") @invocation("esrgan", title="Upscale (RealESRGAN)", tags=["esrgan", "upscale"], category="esrgan", version="1.1.0")
class ESRGANInvocation(BaseInvocation, WithWorkflow, WithMetadata): class ESRGANInvocation(BaseInvocation):
"""Upscales an image using RealESRGAN.""" """Upscales an image using RealESRGAN."""
image: ImageField = InputField(description="The input image") image: ImageField = InputField(description="The input image")
@ -39,8 +38,6 @@ class ESRGANInvocation(BaseInvocation, WithWorkflow, WithMetadata):
default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)" default=400, ge=0, description="Tile size for tiled ESRGAN upscaling (0=tiling disabled)"
) )
model_config = ConfigDict(protected_namespaces=())
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name) image = context.services.images.get_pil_image(self.image.image_name)
models_path = context.services.configuration.models_path models_path = context.services.configuration.models_path
@ -123,7 +120,6 @@ class ESRGANInvocation(BaseInvocation, WithWorkflow, WithMetadata):
node_id=self.id, node_id=self.id,
session_id=context.graph_execution_state_id, session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate, is_intermediate=self.is_intermediate,
metadata=self.metadata,
workflow=self.workflow, workflow=self.workflow,
) )

View File

@ -0,0 +1,4 @@
class CanceledException(Exception):
"""Execution canceled by user."""
pass

View File

@ -0,0 +1,71 @@
from enum import Enum
from pydantic import BaseModel, Field
from invokeai.app.util.metaenum import MetaEnum
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class ResourceOrigin(str, Enum, metaclass=MetaEnum):
"""The origin of a resource (eg image).
- INTERNAL: The resource was created by the application.
- EXTERNAL: The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
INTERNAL = "internal"
"""The resource was created by the application."""
EXTERNAL = "external"
"""The resource was not created by the application.
This may be a user-initiated upload, or an internal application upload (eg Canvas init image).
"""
class InvalidOriginException(ValueError):
"""Raised when a provided value is not a valid ResourceOrigin.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid resource origin."):
super().__init__(message)
class ImageCategory(str, Enum, metaclass=MetaEnum):
"""The category of an image.
- GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose.
- MASK: The image is a mask image.
- CONTROL: The image is a ControlNet control image.
- USER: The image is a user-provide image.
- OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes.
"""
GENERAL = "general"
"""GENERAL: The image is an output, init image, or otherwise an image without a specialized purpose."""
MASK = "mask"
"""MASK: The image is a mask image."""
CONTROL = "control"
"""CONTROL: The image is a ControlNet control image."""
USER = "user"
"""USER: The image is a user-provide image."""
OTHER = "other"
"""OTHER: The image is some other type of image with a specialized purpose. To be used by external nodes."""
class InvalidImageCategoryException(ValueError):
"""Raised when a provided value is not a valid ImageCategory.
Subclasses `ValueError`.
"""
def __init__(self, message="Invalid image category."):
super().__init__(message)

View File

@ -1,24 +1,69 @@
import sqlite3 import sqlite3
import threading import threading
from abc import ABC, abstractmethod
from typing import Optional, cast from typing import Optional, cast
from invokeai.app.services.image_records.image_records_common import ImageRecord, deserialize_image_record from invokeai.app.services.image_record_storage import OffsetPaginatedResults
from invokeai.app.services.shared.pagination import OffsetPaginatedResults from invokeai.app.services.models.image_record import ImageRecord, deserialize_image_record
from invokeai.app.services.shared.sqlite import SqliteDatabase
from .board_image_records_base import BoardImageRecordStorageBase
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass
class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase): class SqliteBoardImageRecordStorage(BoardImageRecordStorageBase):
_conn: sqlite3.Connection _conn: sqlite3.Connection
_cursor: sqlite3.Cursor _cursor: sqlite3.Cursor
_lock: threading.RLock _lock: threading.Lock
def __init__(self, db: SqliteDatabase) -> None: def __init__(self, conn: sqlite3.Connection, lock: threading.Lock) -> None:
super().__init__() super().__init__()
self._lock = db.lock self._conn = conn
self._conn = db.conn # Enable row factory to get rows as dictionaries (must be done before making the cursor!)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor() self._cursor = self._conn.cursor()
self._lock = lock
try: try:
self._lock.acquire() self._lock.acquire()

View File

@ -1,47 +0,0 @@
from abc import ABC, abstractmethod
from typing import Optional
class BoardImageRecordStorageBase(ABC):
"""Abstract base class for the one-to-many board-image relationship record storage."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
@abstractmethod
def get_image_count_for_board(
self,
board_id: str,
) -> int:
"""Gets the number of images for a board."""
pass

View File

@ -0,0 +1,112 @@
from abc import ABC, abstractmethod
from logging import Logger
from typing import Optional
from invokeai.app.services.board_image_record_storage import BoardImageRecordStorageBase
from invokeai.app.services.board_record_storage import BoardRecord, BoardRecordStorageBase
from invokeai.app.services.image_record_storage import ImageRecordStorageBase
from invokeai.app.services.models.board_record import BoardDTO
from invokeai.app.services.urls import UrlServiceBase
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass
class BoardImagesServiceDependencies:
"""Service dependencies for the BoardImagesService."""
board_image_records: BoardImageRecordStorageBase
board_records: BoardRecordStorageBase
image_records: ImageRecordStorageBase
urls: UrlServiceBase
logger: Logger
def __init__(
self,
board_image_record_storage: BoardImageRecordStorageBase,
image_record_storage: ImageRecordStorageBase,
board_record_storage: BoardRecordStorageBase,
url: UrlServiceBase,
logger: Logger,
):
self.board_image_records = board_image_record_storage
self.image_records = image_record_storage
self.board_records = board_record_storage
self.urls = url
self.logger = logger
class BoardImagesService(BoardImagesServiceABC):
_services: BoardImagesServiceDependencies
def __init__(self, services: BoardImagesServiceDependencies):
self._services = services
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self._services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
image_name: str,
) -> None:
self._services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
return self._services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self._services.board_image_records.get_board_for_image(image_name)
return board_id
def board_record_to_dto(board_record: BoardRecord, cover_image_name: Optional[str], image_count: int) -> BoardDTO:
"""Converts a board record to a board DTO."""
return BoardDTO(
**board_record.dict(exclude={"cover_image_name"}),
cover_image_name=cover_image_name,
image_count=image_count,
)

View File

@ -1,39 +0,0 @@
from abc import ABC, abstractmethod
from typing import Optional
class BoardImagesServiceABC(ABC):
"""High-level service for board-image relationship management."""
@abstractmethod
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
"""Adds an image to a board."""
pass
@abstractmethod
def remove_image_from_board(
self,
image_name: str,
) -> None:
"""Removes an image from a board."""
pass
@abstractmethod
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
"""Gets all board images for a board, as a list of the image names."""
pass
@abstractmethod
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
"""Gets an image's board id, if it has one."""
pass

View File

@ -1,38 +0,0 @@
from typing import Optional
from invokeai.app.services.invoker import Invoker
from .board_images_base import BoardImagesServiceABC
class BoardImagesService(BoardImagesServiceABC):
__invoker: Invoker
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
def add_image_to_board(
self,
board_id: str,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.add_image_to_board(board_id, image_name)
def remove_image_from_board(
self,
image_name: str,
) -> None:
self.__invoker.services.board_image_records.remove_image_from_board(image_name)
def get_all_board_image_names_for_board(
self,
board_id: str,
) -> list[str]:
return self.__invoker.services.board_image_records.get_all_board_image_names_for_board(board_id)
def get_board_for_image(
self,
image_name: str,
) -> Optional[str]:
board_id = self.__invoker.services.board_image_records.get_board_for_image(image_name)
return board_id

Some files were not shown because too many files have changed in this diff Show More