Compare commits
341 Commits
release/ad
...
maryhipp/f
Author | SHA1 | Date | |
---|---|---|---|
b102f6da4a | |||
98a44d7fa1 | |||
07416753be | |||
630854ce26 | |||
b55c2b99a7 | |||
f81d36c95f | |||
26b7aadd32 | |||
8e7e3c2b4a | |||
f2e8b66be4 | |||
ff09fd30dc | |||
9fcc30c3d6 | |||
b29a6522ef | |||
936d19cd60 | |||
f25b6ee5d1 | |||
7dea079220 | |||
7fc08962fb | |||
71155d9e72 | |||
6ccd72349d | |||
30e12376d3 | |||
23c8a893e1 | |||
7d93329401 | |||
968fb655a4 | |||
80ec9f4131 | |||
f19def5f7b | |||
9e1dd8ac9c | |||
ebd68b7a6c | |||
68a231afea | |||
21ab650ac0 | |||
b501bd709f | |||
4082f25062 | |||
63d74b4ba6 | |||
da5907613b | |||
3a9201bd31 | |||
d6e2cb7cef | |||
0809e832d4 | |||
7269c9f02e | |||
d86d7e5c33 | |||
5d87578746 | |||
04aef021fc | |||
0fc08bb384 | |||
5779542084 | |||
ebda81e96e | |||
3fe332e85f | |||
3428ea1b3c | |||
6024fc7baf | |||
75c1c4ce5a | |||
ffa05a0bb3 | |||
a20e17330b | |||
4e83644433 | |||
604f0083f2 | |||
2a8a158823 | |||
f8c3db72e9 | |||
60815807f9 | |||
196fb0e014 | |||
eba668956d | |||
ee5ec023f4 | |||
d59661e0af | |||
f51e8eeae1 | |||
6e06935e75 | |||
f7f697849c | |||
8e17e29a5c | |||
12e9f17f7a | |||
cb7e56a9a3 | |||
1a710a4c12 | |||
d8d266d3be | |||
4716632c23 | |||
3c4150d153 | |||
b71b14d582 | |||
73481d4aec | |||
2c049a3b94 | |||
367de44a8b | |||
f5f378d04b | |||
823edbfdef | |||
29bbb27289 | |||
a23502f7ff | |||
ce64dbefce | |||
b47afdc3b5 | |||
cde9c3090f | |||
6924b04d7c | |||
83fbd4bdf2 | |||
6460dcc7e0 | |||
59aa009c93 | |||
59d2a012cd | |||
7e3b620830 | |||
e16b55816f | |||
895cb8637e | |||
fe5bceb1ed | |||
5d475a40f5 | |||
bca7ea1674 | |||
f27bb402fb | |||
dd32c632cd | |||
9e2e740033 | |||
d6362ce0bd | |||
2347a00a70 | |||
0b7dc721cf | |||
ac04a834ef | |||
bbca053b48 | |||
fcf2006502 | |||
ac0d0019bd | |||
2d922a0a65 | |||
8db14911d7 | |||
01bab58b20 | |||
7a57bc99cf | |||
d3b6d86e74 | |||
360b6cb286 | |||
8f9e9e639e | |||
6930d8ba41 | |||
7ad74e680d | |||
c56a6a4ddd | |||
afad764a00 | |||
49a72bd714 | |||
8cf14287b6 | |||
0db47dd5e7 | |||
71f6f77ae8 | |||
6f16229c41 | |||
0cc0d794d1 | |||
535639cb95 | |||
2250bca8d9 | |||
4ce39a5974 | |||
644e9287f0 | |||
6a5e0be022 | |||
707f0f7091 | |||
8e709fe05a | |||
154da609cb | |||
21975d6268 | |||
31035b3e63 | |||
6c05818887 | |||
77c5b051f0 | |||
4fdc4c15f9 | |||
1a4be78013 | |||
eb16ad3d6f | |||
1fee08639d | |||
7caaf40835 | |||
6bfe994622 | |||
8a6f03cd46 | |||
4ce9f9dc36 | |||
00297716d6 | |||
50c0dc71eb | |||
29ccc6a3d8 | |||
f92a5cbabc | |||
acbf10f7ba | |||
46d830b9fa | |||
db17ec7a4b | |||
6320d18846 | |||
37c8b9d06a | |||
7ba2108eb0 | |||
8aeeee4752 | |||
930de51910 | |||
b1b5c0d3b2 | |||
ebe717099e | |||
06245bc761 | |||
b4c0dafdc8 | |||
0cefacb3a2 | |||
baa5f75976 | |||
989aaedc7f | |||
93e08df849 | |||
4a43e1c1b8 | |||
2bbab9d94e | |||
a456f6e6f0 | |||
a408f562d6 | |||
cefdf9ed00 | |||
5413bf07e2 | |||
4cffe282bd | |||
ae8ffe9d51 | |||
870cc5b733 | |||
0b4eb888c5 | |||
11f1cb5391 | |||
1e2e26cfc2 | |||
e9bce6e1c3 | |||
799ef0e7c1 | |||
61c10a7ca8 | |||
93880223e6 | |||
271456b745 | |||
cecee33bc0 | |||
4f43eda09b | |||
011757c497 | |||
2700d0e769 | |||
d256d93a2a | |||
f3c8e986a5 | |||
48f5e4f313 | |||
5950ffe064 | |||
49ca949cd6 | |||
5d69f1cbf5 | |||
9169006171 | |||
28b74523d0 | |||
9359c03c3c | |||
598241e0f2 | |||
e698a8006c | |||
34e7b5a7fb | |||
5c3dd62ae0 | |||
7e2eeec1f3 | |||
7eb79266c4 | |||
5d4610d981 | |||
7c548c5bf3 | |||
2a38606342 | |||
793cf39964 | |||
ab3e689ee0 | |||
20f497054f | |||
6209fef63d | |||
5168415999 | |||
b490c8ae27 | |||
6f354f16ba | |||
e108a2302e | |||
2ffecef792 | |||
2663a07e94 | |||
8d2ef5afc3 | |||
539887b215 | |||
2ba505cce9 | |||
bd92a31d15 | |||
ee2529f3fd | |||
89b7082bc0 | |||
55dfabb892 | |||
2a41fd0b29 | |||
966919ea4a | |||
d3acdcf12f | |||
52f9749bf5 | |||
2a661450c3 | |||
2d96c62fdb | |||
3e6173ee8c | |||
4e9841c924 | |||
f4ea495d23 | |||
43a4b815e8 | |||
4134f18319 | |||
cd292f6c1c | |||
3ce8f3d6fe | |||
10fd4f6a61 | |||
47b1fd4bce | |||
300805a25a | |||
56527da73e | |||
ca4b8e65c1 | |||
f5194f9e2d | |||
ccbbb417f9 | |||
37786a26a5 | |||
4f2930412e | |||
83049a3a5b | |||
38256f97b3 | |||
77f2aabda4 | |||
e32eb2a649 | |||
f4cdfa3b9c | |||
e99b715e9e | |||
ed96c40239 | |||
1b3bb932b9 | |||
f0b102d830 | |||
a47d91f0e7 | |||
358c1f5791 | |||
faec320d48 | |||
fd074abdc4 | |||
d8eb58cd58 | |||
8937d66412 | |||
a6935ae7fb | |||
69968eb67b | |||
e57f5f129c | |||
1b8651fa26 | |||
f6664960ca | |||
84a001720c | |||
c9951cd86b | |||
83a9e26cd8 | |||
80812cf7cd | |||
2a6c940047 | |||
78fe9b642d | |||
53b835945f | |||
acba51c888 | |||
daa9d50d95 | |||
e38d0e39b7 | |||
2c632a811b | |||
6afeb37ce5 | |||
85726c164b | |||
17e1ef0140 | |||
cdfc01d938 | |||
dc632a787a | |||
4e04ea0c0d | |||
f51bb00b5e | |||
12f2357e70 | |||
60629cba3c | |||
5196e4bc38 | |||
89e7848079 | |||
5b38b5ea7f | |||
88c1af969f | |||
fbede84405 | |||
756cb9c27e | |||
78b29db458 | |||
1225c3fb47 | |||
4957a360ff | |||
32ad742f3e | |||
41cd40541a | |||
2d11d97dad | |||
64858b2523 | |||
d5134325f6 | |||
702d0f68af | |||
a0d0e9f474 | |||
475823835f | |||
b95d547ccc | |||
9b4758f02f | |||
8d2952695d | |||
8dd55cc45e | |||
562fb1f3a1 | |||
21ed2d42cd | |||
79cf3ec9a5 | |||
37b76caccf | |||
a4f9bfc8f7 | |||
9afdd0f4a8 | |||
bee6ad1547 | |||
fa3f1b6e41 | |||
d0fa131010 | |||
2f438431bd | |||
bbeb5cb477 | |||
cd3111c324 | |||
16b7246412 | |||
42be78d328 | |||
e469e24a58 | |||
cb698ff1fb | |||
45470a3ac8 | |||
0e738c4290 | |||
09d1bc513d | |||
b6ed4ba559 | |||
aefa828237 | |||
74ea592d02 | |||
457b0dfac0 | |||
96a717c4ba | |||
77b74264a8 | |||
351078e8aa | |||
b8354bd1a4 | |||
3b944b8af6 | |||
b811c037bd | |||
5bf61382a4 | |||
0f1c5f382a | |||
4af1695c60 | |||
df9a903a50 | |||
311be8f97d | |||
3f970c8326 | |||
fc150acde5 | |||
1615df3aa1 | |||
b2a8c45553 | |||
212dbaf9a2 | |||
ac3cf48d7f | |||
296060db63 | |||
d1d8ee71fc | |||
612912a6c9 | |||
bca2372280 | |||
0b860582f0 | |||
87ff380fe4 |
6
.github/CODEOWNERS
vendored
@ -1,5 +1,5 @@
|
||||
# continuous integration
|
||||
/.github/workflows/ @lstein @blessedcoolant @hipsterusername
|
||||
/.github/workflows/ @lstein @blessedcoolant @hipsterusername @ebr
|
||||
|
||||
# documentation
|
||||
/docs/ @lstein @blessedcoolant @hipsterusername @Millu
|
||||
@ -10,7 +10,7 @@
|
||||
|
||||
# installation and configuration
|
||||
/pyproject.toml @lstein @blessedcoolant @hipsterusername
|
||||
/docker/ @lstein @blessedcoolant @hipsterusername
|
||||
/docker/ @lstein @blessedcoolant @hipsterusername @ebr
|
||||
/scripts/ @ebr @lstein @hipsterusername
|
||||
/installer/ @lstein @ebr @hipsterusername
|
||||
/invokeai/assets @lstein @ebr @hipsterusername
|
||||
@ -30,5 +30,3 @@
|
||||
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
|
||||
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
|
||||
/invokeai/frontend/web @psychedelicious @blessedcoolant @maryhipp @hipsterusername
|
||||
|
||||
|
||||
|
5
.github/workflows/build-container.yml
vendored
@ -40,10 +40,14 @@ jobs:
|
||||
- name: Free up more disk space on the runner
|
||||
# https://github.com/actions/runner-images/issues/2840#issuecomment-1284059930
|
||||
run: |
|
||||
echo "----- Free space before cleanup"
|
||||
df -h
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
sudo swapoff /mnt/swapfile
|
||||
sudo rm -rf /mnt/swapfile
|
||||
echo "----- Free space after cleanup"
|
||||
df -h
|
||||
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
@ -91,6 +95,7 @@ jobs:
|
||||
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
||||
|
||||
- name: Build container
|
||||
timeout-minutes: 40
|
||||
id: docker_build
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
|
6
.github/workflows/lint-frontend.yml
vendored
@ -21,16 +21,16 @@ jobs:
|
||||
if: github.event.pull_request.draft == false
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup Node 20
|
||||
- name: Setup Node 18
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '20'
|
||||
node-version: '18'
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Setup pnpm
|
||||
uses: pnpm/action-setup@v2
|
||||
with:
|
||||
version: 8
|
||||
version: '8.12.1'
|
||||
- name: Install dependencies
|
||||
run: 'pnpm install --prefer-frozen-lockfile'
|
||||
- name: Typescript
|
||||
|
50
.github/workflows/pypi-release.yml
vendored
@ -1,13 +1,15 @@
|
||||
name: PyPI Release
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'invokeai/version/invokeai_version.py'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
publish_package:
|
||||
description: 'Publish build on PyPi? [true/false]'
|
||||
required: true
|
||||
default: 'false'
|
||||
|
||||
jobs:
|
||||
release:
|
||||
build-and-release:
|
||||
if: github.repository == 'invoke-ai/InvokeAI'
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
@ -15,19 +17,43 @@ jobs:
|
||||
TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
|
||||
TWINE_NON_INTERACTIVE: 1
|
||||
steps:
|
||||
- name: checkout sources
|
||||
uses: actions/checkout@v3
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: install deps
|
||||
- name: Setup Node 18
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: '18'
|
||||
|
||||
- name: Setup pnpm
|
||||
uses: pnpm/action-setup@v2
|
||||
with:
|
||||
version: '8.12.1'
|
||||
|
||||
- name: Install frontend dependencies
|
||||
run: pnpm install --prefer-frozen-lockfile
|
||||
working-directory: invokeai/frontend/web
|
||||
|
||||
- name: Build frontend
|
||||
run: pnpm run build
|
||||
working-directory: invokeai/frontend/web
|
||||
|
||||
- name: Install python dependencies
|
||||
run: pip install --upgrade build twine
|
||||
|
||||
- name: build package
|
||||
- name: Build python package
|
||||
run: python3 -m build
|
||||
|
||||
- name: check distribution
|
||||
- name: Upload build as workflow artifact
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist
|
||||
path: dist
|
||||
|
||||
- name: Check distribution
|
||||
run: twine check dist/*
|
||||
|
||||
- name: check PyPI versions
|
||||
- name: Check PyPI versions
|
||||
if: github.ref == 'refs/heads/main' || startsWith(github.ref, 'refs/heads/release/')
|
||||
run: |
|
||||
pip install --upgrade requests
|
||||
@ -36,6 +62,6 @@ jobs:
|
||||
EXISTS=scripts.pypi_helper.local_on_pypi(); \
|
||||
print(f'PACKAGE_EXISTS={EXISTS}')" >> $GITHUB_ENV
|
||||
|
||||
- name: upload package
|
||||
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != ''
|
||||
- name: Publish build on PyPi
|
||||
if: env.PACKAGE_EXISTS == 'False' && env.TWINE_PASSWORD != '' && github.event.inputs.publish_package == 'true'
|
||||
run: twine upload dist/*
|
||||
|
14
README.md
@ -1,10 +1,10 @@
|
||||
<div align="center">
|
||||
|
||||

|
||||

|
||||
|
||||
# Invoke - Professional Creative AI Tools for Visual Media
|
||||
## To learn more about Invoke, or implement our Business solutions, visit [invoke.com](https://www.invoke.com/about)
|
||||
|
||||
# Invoke AI - Generative AI for Professional Creatives
|
||||
## Professional Creative Tools for Stable Diffusion, Custom-Trained Models, and more.
|
||||
To learn more about Invoke AI, get started instantly, or implement our Business solutions, visit [invoke.ai](https://invoke.ai)
|
||||
|
||||
|
||||
[![discord badge]][discord link]
|
||||
@ -56,7 +56,9 @@ the foundation for multiple commercial products.
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
</div>
|
||||
|
||||
@ -270,7 +272,7 @@ upgrade script.** See the next section for a Windows recipe.
|
||||
3. Select option [1] to upgrade to the latest release.
|
||||
|
||||
4. Once the upgrade is finished you will be returned to the launcher
|
||||
menu. Select option [7] "Re-run the configure script to fix a broken
|
||||
menu. Select option [6] "Re-run the configure script to fix a broken
|
||||
install or to complete a major upgrade".
|
||||
|
||||
This will run the configure script against the v2.3 directory and
|
||||
|
@ -2,14 +2,17 @@
|
||||
## Any environment variables supported by InvokeAI can be specified here,
|
||||
## in addition to the examples below.
|
||||
|
||||
# INVOKEAI_ROOT is the path to a path on the local filesystem where InvokeAI will store data.
|
||||
# HOST_INVOKEAI_ROOT is the path on the docker host's filesystem where InvokeAI will store data.
|
||||
# Outputs will also be stored here by default.
|
||||
# This **must** be an absolute path.
|
||||
INVOKEAI_ROOT=
|
||||
# If relative, it will be relative to the docker directory in which the docker-compose.yml file is located
|
||||
#HOST_INVOKEAI_ROOT=../../invokeai-data
|
||||
|
||||
# INVOKEAI_ROOT is the path to the root of the InvokeAI repository within the container.
|
||||
# INVOKEAI_ROOT=~/invokeai
|
||||
|
||||
# Get this value from your HuggingFace account settings page.
|
||||
# HUGGING_FACE_HUB_TOKEN=
|
||||
|
||||
## optional variables specific to the docker setup.
|
||||
# GPU_DRIVER=cuda # or rocm
|
||||
# GPU_DRIVER=nvidia #| rocm
|
||||
# CONTAINER_UID=1000
|
||||
|
@ -59,14 +59,16 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
|
||||
# #### Build the Web UI ------------------------------------
|
||||
|
||||
FROM node:18 AS web-builder
|
||||
FROM node:20-slim AS web-builder
|
||||
ENV PNPM_HOME="/pnpm"
|
||||
ENV PATH="$PNPM_HOME:$PATH"
|
||||
RUN corepack enable
|
||||
|
||||
WORKDIR /build
|
||||
COPY invokeai/frontend/web/ ./
|
||||
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||
npm install --include dev
|
||||
RUN --mount=type=cache,target=/usr/lib/node_modules \
|
||||
yarn vite build
|
||||
|
||||
RUN --mount=type=cache,target=/pnpm/store \
|
||||
pnpm install --frozen-lockfile
|
||||
RUN npx vite build
|
||||
|
||||
#### Runtime stage ---------------------------------------
|
||||
|
||||
|
@ -1,6 +1,14 @@
|
||||
# InvokeAI Containerized
|
||||
|
||||
All commands are to be run from the `docker` directory: `cd docker`
|
||||
All commands should be run within the `docker` directory: `cd docker`
|
||||
|
||||
## Quickstart :rocket:
|
||||
|
||||
On a known working Linux+Docker+CUDA (Nvidia) system, execute `./run.sh` in this directory. It will take a few minutes - depending on your internet speed - to install the core models. Once the application starts up, open `http://localhost:9090` in your browser to Invoke!
|
||||
|
||||
For more configuration options (using an AMD GPU, custom root directory location, etc): read on.
|
||||
|
||||
## Detailed setup
|
||||
|
||||
#### Linux
|
||||
|
||||
@ -18,12 +26,12 @@ All commands are to be run from the `docker` directory: `cd docker`
|
||||
|
||||
This is done via Docker Desktop preferences
|
||||
|
||||
## Quickstart
|
||||
### Configure Invoke environment
|
||||
|
||||
1. Make a copy of `env.sample` and name it `.env` (`cp env.sample .env` (Mac/Linux) or `copy example.env .env` (Windows)). Make changes as necessary. Set `INVOKEAI_ROOT` to an absolute path to:
|
||||
a. the desired location of the InvokeAI runtime directory, or
|
||||
b. an existing, v3.0.0 compatible runtime directory.
|
||||
1. `docker compose up`
|
||||
1. Execute `run.sh`
|
||||
|
||||
The image will be built automatically if needed.
|
||||
|
||||
@ -37,19 +45,21 @@ The runtime directory (holding models and outputs) will be created in the locati
|
||||
|
||||
The Docker daemon on the system must be already set up to use the GPU. In case of Linux, this involves installing `nvidia-docker-runtime` and configuring the `nvidia` runtime as default. Steps will be different for AMD. Please see Docker documentation for the most up-to-date instructions for using your GPU with Docker.
|
||||
|
||||
To use an AMD GPU, set `GPU_DRIVER=rocm` in your `.env` file.
|
||||
|
||||
## Customize
|
||||
|
||||
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `docker compose up`, your custom values will be used.
|
||||
Check the `.env.sample` file. It contains some environment variables for running in Docker. Copy it, name it `.env`, and fill it in with your own values. Next time you run `run.sh`, your custom values will be used.
|
||||
|
||||
You can also set these values in `docker-compose.yml` directly, but `.env` will help avoid conflicts when code is updated.
|
||||
|
||||
Example (values are optional, but setting `INVOKEAI_ROOT` is highly recommended):
|
||||
Values are optional, but setting `INVOKEAI_ROOT` is highly recommended. The default is `~/invokeai`. Example:
|
||||
|
||||
```bash
|
||||
INVOKEAI_ROOT=/Volumes/WorkDrive/invokeai
|
||||
HUGGINGFACE_TOKEN=the_actual_token
|
||||
CONTAINER_UID=1000
|
||||
GPU_DRIVER=cuda
|
||||
GPU_DRIVER=nvidia
|
||||
```
|
||||
|
||||
Any environment variables supported by InvokeAI can be set here - please see the [Configuration docs](https://invoke-ai.github.io/InvokeAI/features/CONFIGURATION/) for further detail.
|
||||
|
@ -1,11 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
build_args=""
|
||||
|
||||
[[ -f ".env" ]] && build_args=$(awk '$1 ~ /\=[^$]/ {print "--build-arg " $0 " "}' .env)
|
||||
|
||||
echo "docker compose build args:"
|
||||
echo $build_args
|
||||
|
||||
docker compose build $build_args
|
@ -2,23 +2,8 @@
|
||||
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
invokeai:
|
||||
x-invokeai: &invokeai
|
||||
image: "local/invokeai:latest"
|
||||
# edit below to run on a container runtime other than nvidia-container-runtime.
|
||||
# not yet tested with rocm/AMD GPUs
|
||||
# Comment out the "deploy" section to run on CPU only
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
# For AMD support, comment out the deploy section above and uncomment the devices section below:
|
||||
#devices:
|
||||
# - /dev/kfd:/dev/kfd
|
||||
# - /dev/dri:/dev/dri
|
||||
build:
|
||||
context: ..
|
||||
dockerfile: docker/Dockerfile
|
||||
@ -36,7 +21,9 @@ services:
|
||||
ports:
|
||||
- "${INVOKEAI_PORT:-9090}:9090"
|
||||
volumes:
|
||||
- ${INVOKEAI_ROOT:-~/invokeai}:${INVOKEAI_ROOT:-/invokeai}
|
||||
- type: bind
|
||||
source: ${HOST_INVOKEAI_ROOT:-${INVOKEAI_ROOT:-~/invokeai}}
|
||||
target: ${INVOKEAI_ROOT:-/invokeai}
|
||||
- ${HF_HOME:-~/.cache/huggingface}:${HF_HOME:-/invokeai/.cache/huggingface}
|
||||
# - ${INVOKEAI_MODELS_DIR:-${INVOKEAI_ROOT:-/invokeai/models}}
|
||||
# - ${INVOKEAI_MODELS_CONFIG_PATH:-${INVOKEAI_ROOT:-/invokeai/configs/models.yaml}}
|
||||
@ -50,3 +37,27 @@ services:
|
||||
# - |
|
||||
# invokeai-model-install --yes --default-only --config_file ${INVOKEAI_ROOT}/config_custom.yaml
|
||||
# invokeai-nodes-web --host 0.0.0.0
|
||||
|
||||
services:
|
||||
invokeai-nvidia:
|
||||
<<: *invokeai
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
|
||||
invokeai-cpu:
|
||||
<<: *invokeai
|
||||
profiles:
|
||||
- cpu
|
||||
|
||||
invokeai-rocm:
|
||||
<<: *invokeai
|
||||
devices:
|
||||
- /dev/kfd:/dev/kfd
|
||||
- /dev/dri:/dev/dri
|
||||
profiles:
|
||||
- rocm
|
||||
|
@ -1,11 +1,32 @@
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
set -e -o pipefail
|
||||
|
||||
# This script is provided for backwards compatibility with the old docker setup.
|
||||
# it doesn't do much aside from wrapping the usual docker compose CLI.
|
||||
run() {
|
||||
local scriptdir=$(dirname "${BASH_SOURCE[0]}")
|
||||
cd "$scriptdir" || exit 1
|
||||
|
||||
SCRIPTDIR=$(dirname "${BASH_SOURCE[0]}")
|
||||
cd "$SCRIPTDIR" || exit 1
|
||||
local build_args=""
|
||||
local profile=""
|
||||
|
||||
docker compose up -d
|
||||
docker compose logs -f
|
||||
touch .env
|
||||
build_args=$(awk '$1 ~ /=[^$]/ && $0 !~ /^#/ {print "--build-arg " $0 " "}' .env) &&
|
||||
profile="$(awk -F '=' '/GPU_DRIVER/ {print $2}' .env)"
|
||||
|
||||
[[ -z "$profile" ]] && profile="nvidia"
|
||||
|
||||
local service_name="invokeai-$profile"
|
||||
|
||||
if [[ ! -z "$build_args" ]]; then
|
||||
printf "%s\n" "docker compose build args:"
|
||||
printf "%s\n" "$build_args"
|
||||
fi
|
||||
|
||||
docker compose build $build_args
|
||||
unset build_args
|
||||
|
||||
printf "%s\n" "starting service $service_name"
|
||||
docker compose --profile "$profile" up -d "$service_name"
|
||||
docker compose logs -f
|
||||
}
|
||||
|
||||
run
|
||||
|
Before Width: | Height: | Size: 297 KiB After Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 1.1 MiB After Width: | Height: | Size: 4.9 MiB |
Before Width: | Height: | Size: 169 KiB After Width: | Height: | Size: 1.1 MiB |
Before Width: | Height: | Size: 194 KiB After Width: | Height: | Size: 131 KiB |
Before Width: | Height: | Size: 209 KiB After Width: | Height: | Size: 122 KiB |
Before Width: | Height: | Size: 114 KiB After Width: | Height: | Size: 95 KiB |
Before Width: | Height: | Size: 187 KiB After Width: | Height: | Size: 123 KiB |
Before Width: | Height: | Size: 112 KiB After Width: | Height: | Size: 107 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 61 KiB |
Before Width: | Height: | Size: 167 KiB After Width: | Height: | Size: 119 KiB |
Before Width: | Height: | Size: 70 KiB |
Before Width: | Height: | Size: 59 KiB After Width: | Height: | Size: 60 KiB |
BIN
docs/assets/nodes/workflow_library.png
Normal file
After Width: | Height: | Size: 129 KiB |
277
docs/contributing/DOWNLOAD_QUEUE.md
Normal file
@ -0,0 +1,277 @@
|
||||
# The InvokeAI Download Queue
|
||||
|
||||
The DownloadQueueService provides a multithreaded parallel download
|
||||
queue for arbitrary URLs, with queue prioritization, event handling,
|
||||
and restart capabilities.
|
||||
|
||||
## Simple Example
|
||||
|
||||
```
|
||||
from invokeai.app.services.download import DownloadQueueService, TqdmProgress
|
||||
|
||||
download_queue = DownloadQueueService()
|
||||
for url in ['https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true',
|
||||
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true',
|
||||
'https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png',
|
||||
'https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor',
|
||||
]:
|
||||
|
||||
# urls start downloading as soon as download() is called
|
||||
download_queue.download(source=url,
|
||||
dest='/tmp/downloads',
|
||||
on_progress=TqdmProgress().update
|
||||
)
|
||||
|
||||
download_queue.join() # wait for all downloads to finish
|
||||
for job in download_queue.list_jobs():
|
||||
print(job.model_dump_json(exclude_none=True, indent=4),"\n")
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
```
|
||||
{
|
||||
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/a-painting-of-a-fire.png?raw=true",
|
||||
"dest": "/tmp/downloads",
|
||||
"id": 0,
|
||||
"priority": 10,
|
||||
"status": "completed",
|
||||
"download_path": "/tmp/downloads/a-painting-of-a-fire.png",
|
||||
"job_started": "2023-12-04T05:34:41.742174",
|
||||
"job_ended": "2023-12-04T05:34:42.592035",
|
||||
"bytes": 666734,
|
||||
"total_bytes": 666734
|
||||
}
|
||||
|
||||
{
|
||||
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/birdhouse.png?raw=true",
|
||||
"dest": "/tmp/downloads",
|
||||
"id": 1,
|
||||
"priority": 10,
|
||||
"status": "completed",
|
||||
"download_path": "/tmp/downloads/birdhouse.png",
|
||||
"job_started": "2023-12-04T05:34:41.741975",
|
||||
"job_ended": "2023-12-04T05:34:42.652841",
|
||||
"bytes": 774949,
|
||||
"total_bytes": 774949
|
||||
}
|
||||
|
||||
{
|
||||
"source": "https://github.com/invoke-ai/InvokeAI/blob/main/invokeai/assets/missing.png",
|
||||
"dest": "/tmp/downloads",
|
||||
"id": 2,
|
||||
"priority": 10,
|
||||
"status": "error",
|
||||
"job_started": "2023-12-04T05:34:41.742079",
|
||||
"job_ended": "2023-12-04T05:34:42.147625",
|
||||
"bytes": 0,
|
||||
"total_bytes": 0,
|
||||
"error_type": "HTTPError(Not Found)",
|
||||
"error": "Traceback (most recent call last):\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 182, in _download_next_item\n self._do_download(job)\n File \"/home/lstein/Projects/InvokeAI/invokeai/app/services/download/download_default.py\", line 206, in _do_download\n raise HTTPError(resp.reason)\nrequests.exceptions.HTTPError: Not Found\n"
|
||||
}
|
||||
|
||||
{
|
||||
"source": "https://civitai.com/api/download/models/152309?type=Model&format=SafeTensor",
|
||||
"dest": "/tmp/downloads",
|
||||
"id": 3,
|
||||
"priority": 10,
|
||||
"status": "completed",
|
||||
"download_path": "/tmp/downloads/xl_more_art-full_v1.safetensors",
|
||||
"job_started": "2023-12-04T05:34:42.147645",
|
||||
"job_ended": "2023-12-04T05:34:43.735990",
|
||||
"bytes": 719020768,
|
||||
"total_bytes": 719020768
|
||||
}
|
||||
```
|
||||
|
||||
## The API
|
||||
|
||||
The default download queue is `DownloadQueueService`, an
|
||||
implementation of ABC `DownloadQueueServiceBase`. It juggles multiple
|
||||
background download requests and provides facilities for interrogating
|
||||
and cancelling the requests. Access to a current or past download task
|
||||
is mediated via `DownloadJob` objects which report the current status
|
||||
of a job request
|
||||
|
||||
### The Queue Object
|
||||
|
||||
A default download queue is located in
|
||||
`ApiDependencies.invoker.services.download_queue`. However, you can
|
||||
create additional instances if you need to isolate your queue from the
|
||||
main one.
|
||||
|
||||
```
|
||||
queue = DownloadQueueService(event_bus=events)
|
||||
```
|
||||
|
||||
`DownloadQueueService()` takes three optional arguments:
|
||||
|
||||
| **Argument** | **Type** | **Default** | **Description** |
|
||||
|----------------|-----------------|---------------|-----------------|
|
||||
| `max_parallel_dl` | int | 5 | Maximum number of simultaneous downloads allowed |
|
||||
| `event_bus` | EventServiceBase | None | System-wide FastAPI event bus for reporting download events |
|
||||
| `requests_session` | requests.sessions.Session | None | An alternative requests Session object to use for the download |
|
||||
|
||||
`max_parallel_dl` specifies how many download jobs are allowed to run
|
||||
simultaneously. Each will run in a different thread of execution.
|
||||
|
||||
`event_bus` is an EventServiceBase, typically the one created at
|
||||
InvokeAI startup. If present, download events are periodically emitted
|
||||
on this bus to allow clients to follow download progress.
|
||||
|
||||
`requests_session` is a url library requests Session object. It is
|
||||
used for testing.
|
||||
|
||||
### The Job object
|
||||
|
||||
The queue operates on a series of download job objects. These objects
|
||||
specify the source and destination of the download, and keep track of
|
||||
the progress of the download.
|
||||
|
||||
The only job type currently implemented is `DownloadJob`, a pydantic object with the
|
||||
following fields:
|
||||
|
||||
| **Field** | **Type** | **Default** | **Description** |
|
||||
|----------------|-----------------|---------------|-----------------|
|
||||
| _Fields passed in at job creation time_ |
|
||||
| `source` | AnyHttpUrl | | Where to download from |
|
||||
| `dest` | Path | | Where to download to |
|
||||
| `access_token` | str | | [optional] string containing authentication token for access |
|
||||
| `on_start` | Callable | | [optional] callback when the download starts |
|
||||
| `on_progress` | Callable | | [optional] callback called at intervals during download progress |
|
||||
| `on_complete` | Callable | | [optional] callback called after successful download completion |
|
||||
| `on_error` | Callable | | [optional] callback called after an error occurs |
|
||||
| `id` | int | auto assigned | Job ID, an integer >= 0 |
|
||||
| `priority` | int | 10 | Job priority. Lower priorities run before higher priorities |
|
||||
| |
|
||||
| _Fields updated over the course of the download task_
|
||||
| `status` | DownloadJobStatus| | Status code |
|
||||
| `download_path` | Path | | Path to the location of the downloaded file |
|
||||
| `job_started` | float | | Timestamp for when the job started running |
|
||||
| `job_ended` | float | | Timestamp for when the job completed or errored out |
|
||||
| `job_sequence` | int | | A counter that is incremented each time a model is dequeued |
|
||||
| `bytes` | int | 0 | Bytes downloaded so far |
|
||||
| `total_bytes` | int | 0 | Total size of the file at the remote site |
|
||||
| `error_type` | str | | String version of the exception that caused an error during download |
|
||||
| `error` | str | | String version of the traceback associated with an error |
|
||||
| `cancelled` | bool | False | Set to true if the job was cancelled by the caller|
|
||||
|
||||
When you create a job, you can assign it a `priority`. If multiple
|
||||
jobs are queued, the job with the lowest priority runs first.
|
||||
|
||||
Every job has a `source` and a `dest`. `source` is a pydantic.networks AnyHttpUrl object.
|
||||
The `dest` is a path on the local filesystem that specifies the
|
||||
destination for the downloaded object. Its semantics are
|
||||
described below.
|
||||
|
||||
When the job is submitted, it is assigned a numeric `id`. The id can
|
||||
then be used to fetch the job object from the queue.
|
||||
|
||||
The `status` field is updated by the queue to indicate where the job
|
||||
is in its lifecycle. Values are defined in the string enum
|
||||
`DownloadJobStatus`, a symbol available from
|
||||
`invokeai.app.services.download_manager`. Possible values are:
|
||||
|
||||
| **Value** | **String Value** | ** Description ** |
|
||||
|--------------|---------------------|-------------------|
|
||||
| `WAITING` | waiting | Job is on the queue but not yet running|
|
||||
| `RUNNING` | running | The download is started |
|
||||
| `COMPLETED` | completed | Job has finished its work without an error |
|
||||
| `ERROR` | error | Job encountered an error and will not run again|
|
||||
|
||||
`job_started` and `job_ended` indicate when the job
|
||||
was started (using a python timestamp) and when it completed.
|
||||
|
||||
In case of an error, the job's status will be set to `DownloadJobStatus.ERROR`, the text of the
|
||||
Exception that caused the error will be placed in the `error_type`
|
||||
field and the traceback that led to the error will be in `error`.
|
||||
|
||||
A cancelled job will have status `DownloadJobStatus.ERROR` and an
|
||||
`error_type` field of "DownloadJobCancelledException". In addition,
|
||||
the job's `cancelled` property will be set to True.
|
||||
|
||||
### Callbacks
|
||||
|
||||
Download jobs can be associated with a series of callbacks, each with
|
||||
the signature `Callable[["DownloadJob"], None]`. The callbacks are assigned
|
||||
using optional arguments `on_start`, `on_progress`, `on_complete` and
|
||||
`on_error`. When the corresponding event occurs, the callback wil be
|
||||
invoked and passed the job. The callback will be run in a `try:`
|
||||
context in the same thread as the download job. Any exceptions that
|
||||
occur during execution of the callback will be caught and converted
|
||||
into a log error message, thereby allowing the download to continue.
|
||||
|
||||
#### `TqdmProgress`
|
||||
|
||||
The `invokeai.app.services.download.download_default` module defines a
|
||||
class named `TqdmProgress` which can be used as an `on_progress`
|
||||
handler to display a completion bar in the console. Use as follows:
|
||||
|
||||
```
|
||||
from invokeai.app.services.download import TqdmProgress
|
||||
|
||||
download_queue.download(source='http://some.server.somewhere/some_file',
|
||||
dest='/tmp/downloads',
|
||||
on_progress=TqdmProgress().update
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
### Events
|
||||
|
||||
If the queue was initialized with the InvokeAI event bus (the case
|
||||
when using `ApiDependencies.invoker.services.download_queue`), then
|
||||
download events will also be issued on the bus. The events are:
|
||||
|
||||
* `download_started` -- This is issued when a job is taken off the
|
||||
queue and a request is made to the remote server for the URL headers, but before any data
|
||||
has been downloaded. The event payload will contain the keys `source`
|
||||
and `download_path`. The latter contains the path that the URL will be
|
||||
downloaded to.
|
||||
|
||||
* `download_progress -- This is issued periodically as the download
|
||||
runs. The payload contains the keys `source`, `download_path`,
|
||||
`current_bytes` and `total_bytes`. The latter two fields can be
|
||||
used to display the percent complete.
|
||||
|
||||
* `download_complete` -- This is issued when the download completes
|
||||
successfully. The payload contains the keys `source`, `download_path`
|
||||
and `total_bytes`.
|
||||
|
||||
* `download_error` -- This is issued when the download stops because
|
||||
of an error condition. The payload contains the fields `error_type`
|
||||
and `error`. The former is the text representation of the exception,
|
||||
and the latter is a traceback showing where the error occurred.
|
||||
|
||||
### Job control
|
||||
|
||||
To create a job call the queue's `download()` method. You can list all
|
||||
jobs using `list_jobs()`, fetch a single job by its with
|
||||
`id_to_job()`, cancel a running job with `cancel_job()`, cancel all
|
||||
running jobs with `cancel_all_jobs()`, and wait for all jobs to finish
|
||||
with `join()`.
|
||||
|
||||
#### job = queue.download(source, dest, priority, access_token)
|
||||
|
||||
Create a new download job and put it on the queue, returning the
|
||||
DownloadJob object.
|
||||
|
||||
#### jobs = queue.list_jobs()
|
||||
|
||||
Return a list of all active and inactive `DownloadJob`s.
|
||||
|
||||
#### job = queue.id_to_job(id)
|
||||
|
||||
Return the job corresponding to given ID.
|
||||
|
||||
Return a list of all active and inactive `DownloadJob`s.
|
||||
|
||||
#### queue.prune_jobs()
|
||||
|
||||
Remove inactive (complete or errored) jobs from the listing returned
|
||||
by `list_jobs()`.
|
||||
|
||||
#### queue.join()
|
||||
|
||||
Block until all pending jobs have run to completion or errored out.
|
||||
|
@ -46,17 +46,18 @@ We encourage you to ping @psychedelicious and @blessedcoolant on [Discord](http
|
||||
```bash
|
||||
node --version
|
||||
```
|
||||
2. Install [yarn classic](https://classic.yarnpkg.com/lang/en/) and confirm it is installed by running this:
|
||||
|
||||
2. Install [pnpm](https://pnpm.io/) and confirm it is installed by running this:
|
||||
```bash
|
||||
npm install --global yarn
|
||||
yarn --version
|
||||
npm install --global pnpm
|
||||
pnpm --version
|
||||
```
|
||||
|
||||
From `invokeai/frontend/web/` run `yarn install` to get everything set up.
|
||||
From `invokeai/frontend/web/` run `pnpm install` to get everything set up.
|
||||
|
||||
Start everything in dev mode:
|
||||
1. Ensure your virtual environment is running
|
||||
2. Start the dev server: `yarn dev`
|
||||
2. Start the dev server: `pnpm dev`
|
||||
3. Start the InvokeAI Nodes backend: `python scripts/invokeai-web.py # run from the repo root`
|
||||
4. Point your browser to the dev server address e.g. [http://localhost:5173/](http://localhost:5173/)
|
||||
|
||||
@ -72,4 +73,4 @@ For a number of technical and logistical reasons, we need to commit UI build art
|
||||
|
||||
If you submit a PR, there is a good chance we will ask you to include a separate commit with a build of the app.
|
||||
|
||||
To build for production, run `yarn build`.
|
||||
To build for production, run `pnpm build`.
|
||||
|
53
docs/deprecated/2to3.md
Normal file
@ -0,0 +1,53 @@
|
||||
## :octicons-log-16: Important Changes Since Version 2.3
|
||||
|
||||
### Nodes
|
||||
|
||||
Behind the scenes, InvokeAI has been completely rewritten to support
|
||||
"nodes," small unitary operations that can be combined into graphs to
|
||||
form arbitrary workflows. For example, there is a prompt node that
|
||||
processes the prompt string and feeds it to a text2latent node that
|
||||
generates a latent image. The latents are then fed to a latent2image
|
||||
node that translates the latent image into a PNG.
|
||||
|
||||
The WebGUI has a node editor that allows you to graphically design and
|
||||
execute custom node graphs. The ability to save and load graphs is
|
||||
still a work in progress, but coming soon.
|
||||
|
||||
### Command-Line Interface Retired
|
||||
|
||||
All "invokeai" command-line interfaces have been retired as of version
|
||||
3.4.
|
||||
|
||||
To launch the Web GUI from the command-line, use the command
|
||||
`invokeai-web` rather than the traditional `invokeai --web`.
|
||||
|
||||
### ControlNet
|
||||
|
||||
This version of InvokeAI features ControlNet, a system that allows you
|
||||
to achieve exact poses for human and animal figures by providing a
|
||||
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
|
||||
|
||||
### New Schedulers
|
||||
|
||||
The list of schedulers has been completely revamped and brought up to date:
|
||||
|
||||
| **Short Name** | **Scheduler** | **Notes** |
|
||||
|----------------|---------------------------------|-----------------------------|
|
||||
| **ddim** | DDIMScheduler | |
|
||||
| **ddpm** | DDPMScheduler | |
|
||||
| **deis** | DEISMultistepScheduler | |
|
||||
| **lms** | LMSDiscreteScheduler | |
|
||||
| **pndm** | PNDMScheduler | |
|
||||
| **heun** | HeunDiscreteScheduler | original noise schedule |
|
||||
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
|
||||
| **euler** | EulerDiscreteScheduler | original noise schedule |
|
||||
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
|
||||
| **kdpm_2** | KDPM2DiscreteScheduler | |
|
||||
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
|
||||
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
|
||||
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
|
||||
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
|
||||
| **unipc** | UniPCMultistepScheduler | CPU only |
|
||||
| **lcm** | LCMScheduler | |
|
||||
|
||||
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
|
@ -229,29 +229,28 @@ clarity on the intent and common use cases we expect for utilizing them.
|
||||
currently being rendered by your browser into a merged copy of the image. This
|
||||
lowers the resource requirements and should improve performance.
|
||||
|
||||
### Seam Correction
|
||||
### Compositing / Seam Correction
|
||||
|
||||
When doing Inpainting or Outpainting, Invoke needs to merge the pixels generated
|
||||
by Stable Diffusion into your existing image. To do this, the area around the
|
||||
`seam` at the boundary between your image and the new generation is
|
||||
by Stable Diffusion into your existing image. This is achieved through compositing - the area around the the boundary between your image and the new generation is
|
||||
automatically blended to produce a seamless output. In a fully automatic
|
||||
process, a mask is generated to cover the seam, and then the area of the seam is
|
||||
process, a mask is generated to cover the boundary, and then the area of the boundary is
|
||||
Inpainted.
|
||||
|
||||
Although the default options should work well most of the time, sometimes it can
|
||||
help to alter the parameters that control the seam Inpainting. A wider seam and
|
||||
a blur setting of about 1/3 of the seam have been noted as producing
|
||||
consistently strong results (e.g. 96 wide and 16 blur - adds up to 32 blur with
|
||||
both sides). Seam strength of 0.7 is best for reducing hard seams.
|
||||
help to alter the parameters that control the Compositing. A larger blur and
|
||||
a blur setting have been noted as producing
|
||||
consistently strong results . Strength of 0.7 is best for reducing hard seams.
|
||||
|
||||
- **Mode** - What part of the image will have the the Compositing applied to it.
|
||||
- **Mask edge** will apply Compositing to the edge of the masked area
|
||||
- **Mask** will apply Compositing to the entire masked area
|
||||
- **Unmasked** will apply Compositing to the entire image
|
||||
- **Steps** - Number of generation steps that will occur during the Coherence Pass, similar to Denoising Steps. Higher step counts will generally have better results.
|
||||
- **Strength** - How much noise is added for the Coherence Pass, similar to Denoising Strength. A strength of 0 will result in an unchanged image, while a strength of 1 will result in an image with a completely new area as defined by the Mode setting.
|
||||
- **Blur** - Adjusts the pixel radius of the the mask. A larger blur radius will cause the mask to extend past the visibly masked area, while too small of a blur radius will result in a mask that is smaller than the visibly masked area.
|
||||
- **Blur Method** - The method of blur applied to the masked area.
|
||||
|
||||
- **Seam Size** - The size of the seam masked area. Set higher to make a larger
|
||||
mask around the seam.
|
||||
- **Seam Blur** - The size of the blur that is applied on _each_ side of the
|
||||
masked area.
|
||||
- **Seam Strength** - The Image To Image Strength parameter used for the
|
||||
Inpainting generation that is applied to the seam area.
|
||||
- **Seam Steps** - The number of generation steps that should be used to Inpaint
|
||||
the seam.
|
||||
|
||||
### Infill & Scaling
|
||||
|
||||
|
@ -18,7 +18,7 @@ title: Home
|
||||
width: 100%;
|
||||
max-width: 100%;
|
||||
height: 50px;
|
||||
background-color: #448AFF;
|
||||
background-color: #35A4DB;
|
||||
color: #fff;
|
||||
font-size: 16px;
|
||||
border: none;
|
||||
@ -43,7 +43,7 @@ title: Home
|
||||
<div align="center" markdown>
|
||||
|
||||
|
||||
[](https://github.com/invoke-ai/InvokeAI)
|
||||
[](https://github.com/invoke-ai/InvokeAI)
|
||||
|
||||
[![discord badge]][discord link]
|
||||
|
||||
@ -145,60 +145,6 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB of RAM.
|
||||
- [Guide to InvokeAI Runtime Settings](features/CONFIGURATION.md)
|
||||
- [Database Maintenance and other Command Line Utilities](features/UTILITIES.md)
|
||||
|
||||
## :octicons-log-16: Important Changes Since Version 2.3
|
||||
|
||||
### Nodes
|
||||
|
||||
Behind the scenes, InvokeAI has been completely rewritten to support
|
||||
"nodes," small unitary operations that can be combined into graphs to
|
||||
form arbitrary workflows. For example, there is a prompt node that
|
||||
processes the prompt string and feeds it to a text2latent node that
|
||||
generates a latent image. The latents are then fed to a latent2image
|
||||
node that translates the latent image into a PNG.
|
||||
|
||||
The WebGUI has a node editor that allows you to graphically design and
|
||||
execute custom node graphs. The ability to save and load graphs is
|
||||
still a work in progress, but coming soon.
|
||||
|
||||
### Command-Line Interface Retired
|
||||
|
||||
All "invokeai" command-line interfaces have been retired as of version
|
||||
3.4.
|
||||
|
||||
To launch the Web GUI from the command-line, use the command
|
||||
`invokeai-web` rather than the traditional `invokeai --web`.
|
||||
|
||||
### ControlNet
|
||||
|
||||
This version of InvokeAI features ControlNet, a system that allows you
|
||||
to achieve exact poses for human and animal figures by providing a
|
||||
model to follow. Full details are found in [ControlNet](features/CONTROLNET.md)
|
||||
|
||||
### New Schedulers
|
||||
|
||||
The list of schedulers has been completely revamped and brought up to date:
|
||||
|
||||
| **Short Name** | **Scheduler** | **Notes** |
|
||||
|----------------|---------------------------------|-----------------------------|
|
||||
| **ddim** | DDIMScheduler | |
|
||||
| **ddpm** | DDPMScheduler | |
|
||||
| **deis** | DEISMultistepScheduler | |
|
||||
| **lms** | LMSDiscreteScheduler | |
|
||||
| **pndm** | PNDMScheduler | |
|
||||
| **heun** | HeunDiscreteScheduler | original noise schedule |
|
||||
| **heun_k** | HeunDiscreteScheduler | using karras noise schedule |
|
||||
| **euler** | EulerDiscreteScheduler | original noise schedule |
|
||||
| **euler_k** | EulerDiscreteScheduler | using karras noise schedule |
|
||||
| **kdpm_2** | KDPM2DiscreteScheduler | |
|
||||
| **kdpm_2_a** | KDPM2AncestralDiscreteScheduler | |
|
||||
| **dpmpp_2s** | DPMSolverSinglestepScheduler | |
|
||||
| **dpmpp_2m** | DPMSolverMultistepScheduler | original noise scnedule |
|
||||
| **dpmpp_2m_k** | DPMSolverMultistepScheduler | using karras noise schedule |
|
||||
| **unipc** | UniPCMultistepScheduler | CPU only |
|
||||
| **lcm** | LCMScheduler | |
|
||||
|
||||
Please see [3.0.0 Release Notes](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.0.0) for further details.
|
||||
|
||||
## :material-target: Troubleshooting
|
||||
|
||||
Please check out our **[:material-frequently-asked-questions:
|
||||
|
@ -6,10 +6,17 @@ If you're not familiar with Diffusion, take a look at our [Diffusion Overview.](
|
||||
|
||||
## Features
|
||||
|
||||
### Workflow Library
|
||||
The Workflow Library enables you to save workflows to the Invoke database, allowing you to easily creating, modify and share workflows as needed.
|
||||
|
||||
A curated set of workflows are provided by default - these are designed to help explain important nodes' usage in the Workflow Editor.
|
||||
|
||||

|
||||
|
||||
### Linear View
|
||||
The Workflow Editor allows you to create a UI for your workflow, to make it easier to iterate on your generations.
|
||||
|
||||
To add an input to the Linear UI, right click on the input label and select "Add to Linear View".
|
||||
To add an input to the Linear UI, right click on the **input label** and select "Add to Linear View".
|
||||
|
||||
The Linear UI View will also be part of the saved workflow, allowing you share workflows and enable other to use them, regardless of complexity.
|
||||
|
||||
@ -30,7 +37,7 @@ Any node or input field can be renamed in the workflow editor. If the input fiel
|
||||
Nodes have a "Use Cache" option in their footer. This allows for performance improvements by using the previously cached values during the workflow processing.
|
||||
|
||||
|
||||
## Important Concepts
|
||||
## Important Nodes & Concepts
|
||||
|
||||
There are several node grouping concepts that can be examined with a narrow focus. These (and other) groupings can be pieced together to make up functional graph setups, and are important to understanding how groups of nodes work together as part of a whole. Note that the screenshots below aren't examples of complete functioning node graphs (see Examples).
|
||||
|
||||
@ -56,7 +63,7 @@ The ImageToLatents node takes in a pixel image and a VAE and outputs a latents.
|
||||
|
||||
It is common to want to use both the same seed (for continuity) and random seeds (for variety). To define a seed, simply enter it into the 'Seed' field on a noise node. Conversely, the RandomInt node generates a random integer between 'Low' and 'High', and can be used as input to the 'Seed' edge point on a noise node to randomize your seed.
|
||||
|
||||

|
||||

|
||||
|
||||
### ControlNet
|
||||
|
||||
|
@ -13,6 +13,7 @@ If you'd prefer, you can also just download the whole node folder from the linke
|
||||
To use a community workflow, download the the `.json` node graph file and load it into Invoke AI via the **Load Workflow** button in the Workflow Editor.
|
||||
|
||||
- Community Nodes
|
||||
+ [Adapters-Linked](#adapters-linked-nodes)
|
||||
+ [Average Images](#average-images)
|
||||
+ [Clean Image Artifacts After Cut](#clean-image-artifacts-after-cut)
|
||||
+ [Close Color Mask](#close-color-mask)
|
||||
@ -34,7 +35,9 @@ To use a community workflow, download the the `.json` node graph file and load i
|
||||
+ [Make 3D](#make-3d)
|
||||
+ [Mask Operations](#mask-operations)
|
||||
+ [Match Histogram](#match-histogram)
|
||||
+ [Metadata-Linked](#metadata-linked-nodes)
|
||||
+ [Negative Image](#negative-image)
|
||||
+ [Nightmare Promptgen](#nightmare-promptgen)
|
||||
+ [Oobabooga](#oobabooga)
|
||||
+ [Prompt Tools](#prompt-tools)
|
||||
+ [Remote Image](#remote-image)
|
||||
@ -51,6 +54,19 @@ To use a community workflow, download the the `.json` node graph file and load i
|
||||
- [Help](#help)
|
||||
|
||||
|
||||
--------------------------------
|
||||
### Adapters Linked Nodes
|
||||
|
||||
**Description:** A set of nodes for linked adapters (ControlNet, IP-Adaptor & T2I-Adapter). This allows multiple adapters to be chained together without using a `collect` node which means it can be used inside an `iterate` node without any collecting on every iteration issues.
|
||||
|
||||
- `ControlNet-Linked` - Collects ControlNet info to pass to other nodes.
|
||||
- `IP-Adapter-Linked` - Collects IP-Adapter info to pass to other nodes.
|
||||
- `T2I-Adapter-Linked` - Collects T2I-Adapter info to pass to other nodes.
|
||||
|
||||
Note: These are inherited from the core nodes so any update to the core nodes should be reflected in these.
|
||||
|
||||
**Node Link:** https://github.com/skunkworxdark/adapters-linked-nodes
|
||||
|
||||
--------------------------------
|
||||
### Average Images
|
||||
|
||||
@ -307,6 +323,20 @@ See full docs here: https://github.com/skunkworxdark/Prompt-tools-nodes/edit/mai
|
||||
|
||||
<img src="https://github.com/skunkworxdark/match_histogram/assets/21961335/ed12f329-a0ef-444a-9bae-129ed60d6097" width="300" />
|
||||
|
||||
--------------------------------
|
||||
### Metadata Linked Nodes
|
||||
|
||||
**Description:** A set of nodes for Metadata. Collect Metadata from within an `iterate` node & extract metadata from an image.
|
||||
|
||||
- `Metadata Item Linked` - Allows collecting of metadata while within an iterate node with no need for a collect node or conversion to metadata node.
|
||||
- `Metadata From Image` - Provides Metadata from an image.
|
||||
- `Metadata To String` - Extracts a String value of a label from metadata.
|
||||
- `Metadata To Integer` - Extracts an Integer value of a label from metadata.
|
||||
- `Metadata To Float` - Extracts a Float value of a label from metadata.
|
||||
- `Metadata To Scheduler` - Extracts a Scheduler value of a label from metadata.
|
||||
|
||||
**Node Link:** https://github.com/skunkworxdark/metadata-linked-nodes
|
||||
|
||||
--------------------------------
|
||||
### Negative Image
|
||||
|
||||
@ -317,6 +347,13 @@ Node Link: https://github.com/VeyDlin/negative-image-node
|
||||
View:
|
||||
</br><img src="https://raw.githubusercontent.com/VeyDlin/negative-image-node/master/.readme/node.png" width="500" />
|
||||
|
||||
--------------------------------
|
||||
### Nightmare Promptgen
|
||||
|
||||
**Description:** Nightmare Prompt Generator - Uses a local text generation model to create unique imaginative (but usually nightmarish) prompts for InvokeAI. By default, it allows you to choose from some gpt-neo models I finetuned on over 2500 of my own InvokeAI prompts in Compel format, but you're able to add your own, as well. Offers support for replacing any troublesome words with a random choice from list you can also define.
|
||||
|
||||
**Node Link:** [https://github.com/gogurtenjoyer/nightmare-promptgen](https://github.com/gogurtenjoyer/nightmare-promptgen)
|
||||
|
||||
--------------------------------
|
||||
### Oobabooga
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Example Workflows
|
||||
|
||||
We've curated some example workflows for you to get started with Workflows in InvokeAI
|
||||
We've curated some example workflows for you to get started with Workflows in InvokeAI! These can also be found in the Workflow Library, located in the Workflow Editor of Invoke.
|
||||
|
||||
To use them, right click on your desired workflow, follow the link to GitHub and click the "⬇" button to download the raw file. You can then use the "Load Workflow" functionality in InvokeAI to load the workflow and start generating images!
|
||||
|
||||
|
@ -215,6 +215,7 @@ We thank them for all of their time and hard work.
|
||||
- Robert Bolender
|
||||
- Robin Rombach
|
||||
- Rohan Barar
|
||||
- rohinish404
|
||||
- rpagliuca
|
||||
- rromb
|
||||
- Rupesh Sreeraman
|
||||
|
5
docs/stylesheets/extra.css
Normal file
@ -0,0 +1,5 @@
|
||||
:root {
|
||||
--md-primary-fg-color: #35A4DB;
|
||||
--md-primary-fg-color--light: #35A4DB;
|
||||
--md-primary-fg-color--dark: #35A4DB;
|
||||
}
|
@ -1,8 +1,8 @@
|
||||
{
|
||||
"name": "Text to Image",
|
||||
"name": "Text to Image - SD1.5",
|
||||
"author": "InvokeAI",
|
||||
"description": "Sample text to image workflow for Stable Diffusion 1.5/2",
|
||||
"version": "1.0.1",
|
||||
"version": "1.1.0",
|
||||
"contact": "invoke@invoke.ai",
|
||||
"tags": "text2image, SD1.5, SD2, default",
|
||||
"notes": "",
|
||||
@ -18,10 +18,19 @@
|
||||
{
|
||||
"nodeId": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||
"fieldName": "prompt"
|
||||
},
|
||||
{
|
||||
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||
"fieldName": "width"
|
||||
},
|
||||
{
|
||||
"nodeId": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||
"fieldName": "height"
|
||||
}
|
||||
],
|
||||
"meta": {
|
||||
"version": "1.0.0"
|
||||
"category": "default",
|
||||
"version": "2.0.0"
|
||||
},
|
||||
"nodes": [
|
||||
{
|
||||
@ -30,44 +39,56 @@
|
||||
"data": {
|
||||
"id": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||
"type": "compel",
|
||||
"label": "Negative Compel Prompt",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"prompt": {
|
||||
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
|
||||
"name": "prompt",
|
||||
"type": "string",
|
||||
"fieldKind": "input",
|
||||
"label": "Negative Prompt",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": ""
|
||||
},
|
||||
"clip": {
|
||||
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
|
||||
"name": "clip",
|
||||
"type": "ClipField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"conditioning": {
|
||||
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
|
||||
"name": "conditioning",
|
||||
"type": "ConditioningField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"label": "Negative Compel Prompt",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"embedWorkflow": false,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"width": 320,
|
||||
"height": 261,
|
||||
"height": 259,
|
||||
"position": {
|
||||
"x": 995.7263915923627,
|
||||
"y": 239.67783573351227
|
||||
"x": 1000,
|
||||
"y": 350
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -76,37 +97,60 @@
|
||||
"data": {
|
||||
"id": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||
"type": "noise",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.1",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"seed": {
|
||||
"id": "6431737c-918a-425d-a3b4-5d57e2f35d4d",
|
||||
"name": "seed",
|
||||
"type": "integer",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"width": {
|
||||
"id": "38fc5b66-fe6e-47c8-bba9-daf58e454ed7",
|
||||
"name": "width",
|
||||
"type": "integer",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 512
|
||||
},
|
||||
"height": {
|
||||
"id": "16298330-e2bf-4872-a514-d6923df53cbb",
|
||||
"name": "height",
|
||||
"type": "integer",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 512
|
||||
},
|
||||
"use_cpu": {
|
||||
"id": "c7c436d3-7a7a-4e76-91e4-c6deb271623c",
|
||||
"name": "use_cpu",
|
||||
"type": "boolean",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": true
|
||||
}
|
||||
},
|
||||
@ -114,35 +158,40 @@
|
||||
"noise": {
|
||||
"id": "50f650dc-0184-4e23-a927-0497a96fe954",
|
||||
"name": "noise",
|
||||
"type": "LatentsField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "bb8a452b-133d-42d1-ae4a-3843d7e4109a",
|
||||
"name": "width",
|
||||
"type": "integer",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "35cfaa12-3b8b-4b7a-a884-327ff3abddd9",
|
||||
"name": "height",
|
||||
"type": "integer",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"embedWorkflow": false,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"width": 320,
|
||||
"height": 389,
|
||||
"height": 388,
|
||||
"position": {
|
||||
"x": 993.4442117555518,
|
||||
"y": 605.6757415334787
|
||||
"x": 600,
|
||||
"y": 325
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -151,13 +200,24 @@
|
||||
"data": {
|
||||
"id": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||
"type": "main_model_loader",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"model": {
|
||||
"id": "993eabd2-40fd-44fe-bce7-5d0c7075ddab",
|
||||
"name": "model",
|
||||
"type": "MainModelField",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "MainModelField"
|
||||
},
|
||||
"value": {
|
||||
"model_name": "stable-diffusion-v1-5",
|
||||
"base_model": "sd-1",
|
||||
@ -169,35 +229,40 @@
|
||||
"unet": {
|
||||
"id": "5c18c9db-328d-46d0-8cb9-143391c410be",
|
||||
"name": "unet",
|
||||
"type": "UNetField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"id": "6effcac0-ec2f-4bf5-a49e-a2c29cf921f4",
|
||||
"name": "clip",
|
||||
"type": "ClipField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"id": "57683ba3-f5f5-4f58-b9a2-4b83dacad4a1",
|
||||
"name": "vae",
|
||||
"type": "VaeField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "VaeField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"embedWorkflow": false,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"width": 320,
|
||||
"height": 226,
|
||||
"position": {
|
||||
"x": 163.04436745878343,
|
||||
"y": 254.63156870373479
|
||||
"x": 600,
|
||||
"y": 25
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -206,44 +271,56 @@
|
||||
"data": {
|
||||
"id": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||
"type": "compel",
|
||||
"label": "Positive Compel Prompt",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"prompt": {
|
||||
"id": "7739aff6-26cb-4016-8897-5a1fb2305e4e",
|
||||
"name": "prompt",
|
||||
"type": "string",
|
||||
"fieldKind": "input",
|
||||
"label": "Positive Prompt",
|
||||
"value": ""
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": "Super cute tiger cub, national geographic award-winning photograph"
|
||||
},
|
||||
"clip": {
|
||||
"id": "48d23dce-a6ae-472a-9f8c-22a714ea5ce0",
|
||||
"name": "clip",
|
||||
"type": "ClipField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"conditioning": {
|
||||
"id": "37cf3a9d-f6b7-4b64-8ff6-2558c5ecc447",
|
||||
"name": "conditioning",
|
||||
"type": "ConditioningField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"label": "Positive Compel Prompt",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"embedWorkflow": false,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"width": 320,
|
||||
"height": 261,
|
||||
"height": 259,
|
||||
"position": {
|
||||
"x": 595.7263915923627,
|
||||
"y": 239.67783573351227
|
||||
"x": 1000,
|
||||
"y": 25
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -252,21 +329,36 @@
|
||||
"data": {
|
||||
"id": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
|
||||
"type": "rand_int",
|
||||
"label": "Random Seed",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"low": {
|
||||
"id": "3ec65a37-60ba-4b6c-a0b2-553dd7a84b84",
|
||||
"name": "low",
|
||||
"type": "integer",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"high": {
|
||||
"id": "085f853a-1a5f-494d-8bec-e4ba29a3f2d1",
|
||||
"name": "high",
|
||||
"type": "integer",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 2147483647
|
||||
}
|
||||
},
|
||||
@ -274,23 +366,20 @@
|
||||
"value": {
|
||||
"id": "812ade4d-7699-4261-b9fc-a6c9d2ab55ee",
|
||||
"name": "value",
|
||||
"type": "integer",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"label": "Random Seed",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"embedWorkflow": false,
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"width": 320,
|
||||
"height": 218,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 541.094822888628,
|
||||
"y": 694.5704476446829
|
||||
"x": 600,
|
||||
"y": 275
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -299,144 +388,224 @@
|
||||
"data": {
|
||||
"id": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"type": "denoise_latents",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.5.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"positive_conditioning": {
|
||||
"id": "90b7f4f8-ada7-4028-8100-d2e54f192052",
|
||||
"name": "positive_conditioning",
|
||||
"type": "ConditioningField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
},
|
||||
"negative_conditioning": {
|
||||
"id": "9393779e-796c-4f64-b740-902a1177bf53",
|
||||
"name": "negative_conditioning",
|
||||
"type": "ConditioningField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
},
|
||||
"noise": {
|
||||
"id": "8e17f1e5-4f98-40b1-b7f4-86aeeb4554c1",
|
||||
"name": "noise",
|
||||
"type": "LatentsField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"steps": {
|
||||
"id": "9b63302d-6bd2-42c9-ac13-9b1afb51af88",
|
||||
"name": "steps",
|
||||
"type": "integer",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"value": 10
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 50
|
||||
},
|
||||
"cfg_scale": {
|
||||
"id": "87dd04d3-870e-49e1-98bf-af003a810109",
|
||||
"name": "cfg_scale",
|
||||
"type": "FloatPolymorphic",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 7.5
|
||||
},
|
||||
"denoising_start": {
|
||||
"id": "f369d80f-4931-4740-9bcd-9f0620719fab",
|
||||
"name": "denoising_start",
|
||||
"type": "float",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"denoising_end": {
|
||||
"id": "747d10e5-6f02-445c-994c-0604d814de8c",
|
||||
"name": "denoising_end",
|
||||
"type": "float",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 1
|
||||
},
|
||||
"scheduler": {
|
||||
"id": "1de84a4e-3a24-4ec8-862b-16ce49633b9b",
|
||||
"name": "scheduler",
|
||||
"type": "Scheduler",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"value": "euler"
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "SchedulerField"
|
||||
},
|
||||
"value": "unipc"
|
||||
},
|
||||
"unet": {
|
||||
"id": "ffa6fef4-3ce2-4bdb-9296-9a834849489b",
|
||||
"name": "unet",
|
||||
"type": "UNetField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
},
|
||||
"control": {
|
||||
"id": "077b64cb-34be-4fcc-83f2-e399807a02bd",
|
||||
"name": "control",
|
||||
"type": "ControlPolymorphic",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "ControlField"
|
||||
}
|
||||
},
|
||||
"ip_adapter": {
|
||||
"id": "1d6948f7-3a65-4a65-a20c-768b287251aa",
|
||||
"name": "ip_adapter",
|
||||
"type": "IPAdapterPolymorphic",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "IPAdapterField"
|
||||
}
|
||||
},
|
||||
"t2i_adapter": {
|
||||
"id": "75e67b09-952f-4083-aaf4-6b804d690412",
|
||||
"name": "t2i_adapter",
|
||||
"type": "T2IAdapterPolymorphic",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "T2IAdapterField"
|
||||
}
|
||||
},
|
||||
"cfg_rescale_multiplier": {
|
||||
"id": "9101f0a6-5fe0-4826-b7b3-47e5d506826c",
|
||||
"name": "cfg_rescale_multiplier",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"latents": {
|
||||
"id": "334d4ba3-5a99-4195-82c5-86fb3f4f7d43",
|
||||
"name": "latents",
|
||||
"type": "LatentsField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"denoise_mask": {
|
||||
"id": "0d3dbdbf-b014-4e95-8b18-ff2ff9cb0bfa",
|
||||
"name": "denoise_mask",
|
||||
"type": "DenoiseMaskField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "DenoiseMaskField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"latents": {
|
||||
"id": "70fa5bbc-0c38-41bb-861a-74d6d78d2f38",
|
||||
"name": "latents",
|
||||
"type": "LatentsField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "98ee0e6c-82aa-4e8f-8be5-dc5f00ee47f0",
|
||||
"name": "width",
|
||||
"type": "integer",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "e8cb184a-5e1a-47c8-9695-4b8979564f5d",
|
||||
"name": "height",
|
||||
"type": "integer",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"embedWorkflow": false,
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.4.0"
|
||||
},
|
||||
"width": 320,
|
||||
"height": 646,
|
||||
"height": 703,
|
||||
"position": {
|
||||
"x": 1476.5794704734735,
|
||||
"y": 256.80174342731783
|
||||
"x": 1400,
|
||||
"y": 25
|
||||
}
|
||||
},
|
||||
{
|
||||
@ -445,153 +614,185 @@
|
||||
"data": {
|
||||
"id": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
||||
"type": "l2i",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"version": "1.2.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"metadata": {
|
||||
"id": "ab375f12-0042-4410-9182-29e30db82c85",
|
||||
"name": "metadata",
|
||||
"type": "MetadataField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "MetadataField"
|
||||
}
|
||||
},
|
||||
"latents": {
|
||||
"id": "3a7e7efd-bff5-47d7-9d48-615127afee78",
|
||||
"name": "latents",
|
||||
"type": "LatentsField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"id": "a1f5f7a1-0795-4d58-b036-7820c0b0ef2b",
|
||||
"name": "vae",
|
||||
"type": "VaeField",
|
||||
"fieldKind": "input",
|
||||
"label": ""
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "VaeField"
|
||||
}
|
||||
},
|
||||
"tiled": {
|
||||
"id": "da52059a-0cee-4668-942f-519aa794d739",
|
||||
"name": "tiled",
|
||||
"type": "boolean",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": false
|
||||
},
|
||||
"fp32": {
|
||||
"id": "c4841df3-b24e-4140-be3b-ccd454c2522c",
|
||||
"name": "fp32",
|
||||
"type": "boolean",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"value": false
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": true
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"image": {
|
||||
"id": "72d667d0-cf85-459d-abf2-28bd8b823fe7",
|
||||
"name": "image",
|
||||
"type": "ImageField",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ImageField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "c8c907d8-1066-49d1-b9a6-83bdcd53addc",
|
||||
"name": "width",
|
||||
"type": "integer",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "230f359c-b4ea-436c-b372-332d7dcdca85",
|
||||
"name": "height",
|
||||
"type": "integer",
|
||||
"fieldKind": "output"
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"embedWorkflow": false,
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"width": 320,
|
||||
"height": 267,
|
||||
"height": 266,
|
||||
"position": {
|
||||
"x": 2037.9648469717395,
|
||||
"y": 426.10844427600136
|
||||
"x": 1800,
|
||||
"y": 25
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
|
||||
"sourceHandle": "value",
|
||||
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||
"targetHandle": "seed",
|
||||
"id": "reactflow__edge-ea94bc37-d995-4a83-aa99-4af42479f2f2value-55705012-79b9-4aac-9f26-c0b10309785bseed",
|
||||
"type": "default"
|
||||
"source": "ea94bc37-d995-4a83-aa99-4af42479f2f2",
|
||||
"target": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||
"type": "default",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
},
|
||||
{
|
||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||
"sourceHandle": "clip",
|
||||
"target": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||
"targetHandle": "clip",
|
||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-7d8bf987-284f-413a-b2fd-d825445a5d6cclip",
|
||||
"type": "default"
|
||||
},
|
||||
{
|
||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||
"target": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||
"type": "default",
|
||||
"sourceHandle": "clip",
|
||||
"target": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||
"targetHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8clip-93dc02a4-d05b-48ed-b99c-c9b616af3402clip",
|
||||
"type": "default"
|
||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||
"target": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||
"type": "default",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
},
|
||||
{
|
||||
"source": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||
"sourceHandle": "noise",
|
||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"targetHandle": "noise",
|
||||
"id": "reactflow__edge-55705012-79b9-4aac-9f26-c0b10309785bnoise-eea2702a-19fb-45b5-9d75-56b4211ec03cnoise",
|
||||
"type": "default"
|
||||
"source": "55705012-79b9-4aac-9f26-c0b10309785b",
|
||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"type": "default",
|
||||
"sourceHandle": "noise",
|
||||
"targetHandle": "noise"
|
||||
},
|
||||
{
|
||||
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||
"sourceHandle": "conditioning",
|
||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"targetHandle": "positive_conditioning",
|
||||
"id": "reactflow__edge-7d8bf987-284f-413a-b2fd-d825445a5d6cconditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cpositive_conditioning",
|
||||
"type": "default"
|
||||
},
|
||||
{
|
||||
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||
"source": "7d8bf987-284f-413a-b2fd-d825445a5d6c",
|
||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"type": "default",
|
||||
"sourceHandle": "conditioning",
|
||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"targetHandle": "negative_conditioning",
|
||||
"targetHandle": "positive_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-93dc02a4-d05b-48ed-b99c-c9b616af3402conditioning-eea2702a-19fb-45b5-9d75-56b4211ec03cnegative_conditioning",
|
||||
"type": "default"
|
||||
},
|
||||
{
|
||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||
"sourceHandle": "unet",
|
||||
"source": "93dc02a4-d05b-48ed-b99c-c9b616af3402",
|
||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"targetHandle": "unet",
|
||||
"type": "default",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "negative_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8unet-eea2702a-19fb-45b5-9d75-56b4211ec03cunet",
|
||||
"type": "default"
|
||||
},
|
||||
{
|
||||
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"sourceHandle": "latents",
|
||||
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
||||
"targetHandle": "latents",
|
||||
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
|
||||
"type": "default"
|
||||
},
|
||||
{
|
||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||
"sourceHandle": "vae",
|
||||
"target": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"type": "default",
|
||||
"sourceHandle": "unet",
|
||||
"targetHandle": "unet"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-eea2702a-19fb-45b5-9d75-56b4211ec03clatents-58c957f5-0d01-41fc-a803-b2bbf0413d4flatents",
|
||||
"source": "eea2702a-19fb-45b5-9d75-56b4211ec03c",
|
||||
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
||||
"targetHandle": "vae",
|
||||
"type": "default",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c8d55139-f380-4695-b7f2-8b3d1e1e3db8vae-58c957f5-0d01-41fc-a803-b2bbf0413d4fvae",
|
||||
"type": "default"
|
||||
"source": "c8d55139-f380-4695-b7f2-8b3d1e1e3db8",
|
||||
"target": "58c957f5-0d01-41fc-a803-b2bbf0413d4f",
|
||||
"type": "default",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
}
|
||||
]
|
||||
}
|
@ -91,9 +91,11 @@ rm -rf InvokeAI-Installer
|
||||
|
||||
# copy content
|
||||
mkdir InvokeAI-Installer
|
||||
for f in templates lib *.txt *.reg; do
|
||||
for f in templates *.txt *.reg; do
|
||||
cp -r ${f} InvokeAI-Installer/
|
||||
done
|
||||
mkdir InvokeAI-Installer/lib
|
||||
cp lib/*.py InvokeAI-Installer/lib
|
||||
|
||||
# Move the wheel
|
||||
mv dist/*.whl InvokeAI-Installer/lib/
|
||||
@ -111,6 +113,6 @@ cp WinLongPathsEnabled.reg InvokeAI-Installer/
|
||||
zip -r InvokeAI-installer-$VERSION.zip InvokeAI-Installer
|
||||
|
||||
# clean up
|
||||
rm -rf InvokeAI-Installer tmp dist
|
||||
rm -rf InvokeAI-Installer tmp dist ../invokeai/frontend/web/dist/
|
||||
|
||||
exit 0
|
||||
|
@ -241,12 +241,12 @@ class InvokeAiInstance:
|
||||
pip[
|
||||
"install",
|
||||
"--require-virtualenv",
|
||||
"numpy~=1.24.0", # choose versions that won't be uninstalled during phase 2
|
||||
"numpy==1.26.3", # choose versions that won't be uninstalled during phase 2
|
||||
"urllib3~=1.26.0",
|
||||
"requests~=2.28.0",
|
||||
"torch==2.1.1",
|
||||
"torch==2.1.2",
|
||||
"torchmetrics==0.11.4",
|
||||
"torchvision>=0.16.1",
|
||||
"torchvision==0.16.2",
|
||||
"--force-reinstall",
|
||||
"--find-links" if find_links is not None else None,
|
||||
find_links,
|
||||
|
@ -11,6 +11,7 @@ from ..services.board_images.board_images_default import BoardImagesService
|
||||
from ..services.board_records.board_records_sqlite import SqliteBoardRecordStorage
|
||||
from ..services.boards.boards_default import BoardService
|
||||
from ..services.config import InvokeAIAppConfig
|
||||
from ..services.download import DownloadQueueService
|
||||
from ..services.image_files.image_files_disk import DiskImageFileStorage
|
||||
from ..services.image_records.image_records_sqlite import SqliteImageRecordStorage
|
||||
from ..services.images.images_default import ImageService
|
||||
@ -29,8 +30,7 @@ from ..services.model_records import ModelRecordServiceSQL
|
||||
from ..services.names.names_default import SimpleNameService
|
||||
from ..services.session_processor.session_processor_default import DefaultSessionProcessor
|
||||
from ..services.session_queue.session_queue_sqlite import SqliteSessionQueue
|
||||
from ..services.shared.default_graphs import create_system_graphs
|
||||
from ..services.shared.graph import GraphExecutionState, LibraryGraph
|
||||
from ..services.shared.graph import GraphExecutionState
|
||||
from ..services.urls.urls_default import LocalUrlService
|
||||
from ..services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
|
||||
from .events import FastAPIEventService
|
||||
@ -80,13 +80,13 @@ class ApiDependencies:
|
||||
boards = BoardService()
|
||||
events = FastAPIEventService(event_handler_id)
|
||||
graph_execution_manager = SqliteItemStorage[GraphExecutionState](db=db, table_name="graph_executions")
|
||||
graph_library = SqliteItemStorage[LibraryGraph](db=db, table_name="graphs")
|
||||
image_records = SqliteImageRecordStorage(db=db)
|
||||
images = ImageService()
|
||||
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
|
||||
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f"{output_folder}/latents"))
|
||||
model_manager = ModelManagerService(config, logger)
|
||||
model_record_service = ModelRecordServiceSQL(db=db)
|
||||
download_queue_service = DownloadQueueService(event_bus=events)
|
||||
model_install_service = ModelInstallService(
|
||||
app_config=config, record_store=model_record_service, event_bus=events
|
||||
)
|
||||
@ -107,7 +107,6 @@ class ApiDependencies:
|
||||
configuration=configuration,
|
||||
events=events,
|
||||
graph_execution_manager=graph_execution_manager,
|
||||
graph_library=graph_library,
|
||||
image_files=image_files,
|
||||
image_records=image_records,
|
||||
images=images,
|
||||
@ -116,6 +115,7 @@ class ApiDependencies:
|
||||
logger=logger,
|
||||
model_manager=model_manager,
|
||||
model_records=model_record_service,
|
||||
download_queue=download_queue_service,
|
||||
model_install=model_install_service,
|
||||
names=names,
|
||||
performance_statistics=performance_statistics,
|
||||
@ -127,8 +127,6 @@ class ApiDependencies:
|
||||
workflow_records=workflow_records,
|
||||
)
|
||||
|
||||
create_system_graphs(services.graph_library)
|
||||
|
||||
ApiDependencies.invoker = Invoker(services)
|
||||
db.clean()
|
||||
|
||||
|
111
invokeai/app/api/routers/download_queue.py
Normal file
@ -0,0 +1,111 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein
|
||||
"""FastAPI route for the download queue."""
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from fastapi import Body, Path, Response
|
||||
from fastapi.routing import APIRouter
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from starlette.exceptions import HTTPException
|
||||
|
||||
from invokeai.app.services.download import (
|
||||
DownloadJob,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
download_queue_router = APIRouter(prefix="/v1/download_queue", tags=["download_queue"])
|
||||
|
||||
|
||||
@download_queue_router.get(
|
||||
"/",
|
||||
operation_id="list_downloads",
|
||||
)
|
||||
async def list_downloads() -> List[DownloadJob]:
|
||||
"""Get a list of active and inactive jobs."""
|
||||
queue = ApiDependencies.invoker.services.download_queue
|
||||
return queue.list_jobs()
|
||||
|
||||
|
||||
@download_queue_router.patch(
|
||||
"/",
|
||||
operation_id="prune_downloads",
|
||||
responses={
|
||||
204: {"description": "All completed jobs have been pruned"},
|
||||
400: {"description": "Bad request"},
|
||||
},
|
||||
)
|
||||
async def prune_downloads():
|
||||
"""Prune completed and errored jobs."""
|
||||
queue = ApiDependencies.invoker.services.download_queue
|
||||
queue.prune_jobs()
|
||||
return Response(status_code=204)
|
||||
|
||||
|
||||
@download_queue_router.post(
|
||||
"/i/",
|
||||
operation_id="download",
|
||||
)
|
||||
async def download(
|
||||
source: AnyHttpUrl = Body(description="download source"),
|
||||
dest: str = Body(description="download destination"),
|
||||
priority: int = Body(default=10, description="queue priority"),
|
||||
access_token: Optional[str] = Body(default=None, description="token for authorization to download"),
|
||||
) -> DownloadJob:
|
||||
"""Download the source URL to the file or directory indicted in dest."""
|
||||
queue = ApiDependencies.invoker.services.download_queue
|
||||
return queue.download(source, dest, priority, access_token)
|
||||
|
||||
|
||||
@download_queue_router.get(
|
||||
"/i/{id}",
|
||||
operation_id="get_download_job",
|
||||
responses={
|
||||
200: {"description": "Success"},
|
||||
404: {"description": "The requested download JobID could not be found"},
|
||||
},
|
||||
)
|
||||
async def get_download_job(
|
||||
id: int = Path(description="ID of the download job to fetch."),
|
||||
) -> DownloadJob:
|
||||
"""Get a download job using its ID."""
|
||||
try:
|
||||
job = ApiDependencies.invoker.services.download_queue.id_to_job(id)
|
||||
return job
|
||||
except UnknownJobIDException as e:
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
|
||||
@download_queue_router.delete(
|
||||
"/i/{id}",
|
||||
operation_id="cancel_download_job",
|
||||
responses={
|
||||
204: {"description": "Job has been cancelled"},
|
||||
404: {"description": "The requested download JobID could not be found"},
|
||||
},
|
||||
)
|
||||
async def cancel_download_job(
|
||||
id: int = Path(description="ID of the download job to cancel."),
|
||||
):
|
||||
"""Cancel a download job using its ID."""
|
||||
try:
|
||||
queue = ApiDependencies.invoker.services.download_queue
|
||||
job = queue.id_to_job(id)
|
||||
queue.cancel_job(job)
|
||||
return Response(status_code=204)
|
||||
except UnknownJobIDException as e:
|
||||
raise HTTPException(status_code=404, detail=str(e))
|
||||
|
||||
|
||||
@download_queue_router.delete(
|
||||
"/i",
|
||||
operation_id="cancel_all_download_jobs",
|
||||
responses={
|
||||
204: {"description": "Download jobs have been cancelled"},
|
||||
},
|
||||
)
|
||||
async def cancel_all_download_jobs():
|
||||
"""Cancel all download jobs."""
|
||||
ApiDependencies.invoker.services.download_queue.cancel_all_jobs()
|
||||
return Response(status_code=204)
|
@ -26,7 +26,7 @@ from invokeai.backend.model_manager.config import (
|
||||
|
||||
from ..dependencies import ApiDependencies
|
||||
|
||||
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2"])
|
||||
model_records_router = APIRouter(prefix="/v1/model/record", tags=["model_manager_v2_unstable"])
|
||||
|
||||
|
||||
class ModelsList(BaseModel):
|
||||
|
@ -23,10 +23,11 @@ class DynamicPromptsResponse(BaseModel):
|
||||
)
|
||||
async def parse_dynamicprompts(
|
||||
prompt: str = Body(description="The prompt to parse with dynamicprompts"),
|
||||
max_prompts: int = Body(default=1000, description="The max number of prompts to generate"),
|
||||
max_prompts: int = Body(ge=1, le=10000, default=1000, description="The max number of prompts to generate"),
|
||||
combinatorial: bool = Body(default=True, description="Whether to use the combinatorial generator"),
|
||||
) -> DynamicPromptsResponse:
|
||||
"""Creates a batch process"""
|
||||
max_prompts = min(max_prompts, 10000)
|
||||
generator: Union[RandomPromptGenerator, CombinatorialPromptGenerator]
|
||||
try:
|
||||
error: Optional[str] = None
|
||||
|
@ -45,6 +45,7 @@ if True: # hack to make flake8 happy with imports coming after setting up the c
|
||||
app_info,
|
||||
board_images,
|
||||
boards,
|
||||
download_queue,
|
||||
images,
|
||||
model_records,
|
||||
models,
|
||||
@ -75,7 +76,7 @@ mimetypes.add_type("text/css", ".css")
|
||||
|
||||
# Create the app
|
||||
# TODO: create this all in a method so configuration/etc. can be passed in?
|
||||
app = FastAPI(title="Invoke AI", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
|
||||
app = FastAPI(title="Invoke - Community Edition", docs_url=None, redoc_url=None, separate_input_output_schemas=False)
|
||||
|
||||
# Add event handler
|
||||
event_handler_id: int = id(app)
|
||||
@ -116,6 +117,7 @@ app.include_router(sessions.session_router, prefix="/api")
|
||||
app.include_router(utilities.utilities_router, prefix="/api")
|
||||
app.include_router(models.models_router, prefix="/api")
|
||||
app.include_router(model_records.model_records_router, prefix="/api")
|
||||
app.include_router(download_queue.download_queue_router, prefix="/api")
|
||||
app.include_router(images.images_router, prefix="/api")
|
||||
app.include_router(boards.boards_router, prefix="/api")
|
||||
app.include_router(board_images.board_images_router, prefix="/api")
|
||||
@ -203,8 +205,8 @@ app.openapi = custom_openapi # type: ignore [method-assign] # this is a valid a
|
||||
def overridden_swagger() -> HTMLResponse:
|
||||
return get_swagger_ui_html(
|
||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||
title=app.title,
|
||||
swagger_favicon_url="/static/docs/favicon.ico",
|
||||
title=f"{app.title} - Swagger UI",
|
||||
swagger_favicon_url="static/docs/invoke-favicon-docs.svg",
|
||||
)
|
||||
|
||||
|
||||
@ -212,8 +214,8 @@ def overridden_swagger() -> HTMLResponse:
|
||||
def overridden_redoc() -> HTMLResponse:
|
||||
return get_redoc_html(
|
||||
openapi_url=app.openapi_url, # type: ignore [arg-type] # this is always a string
|
||||
title=app.title,
|
||||
redoc_favicon_url="/static/docs/favicon.ico",
|
||||
title=f"{app.title} - Redoc",
|
||||
redoc_favicon_url="static/docs/invoke-favicon-docs.svg",
|
||||
)
|
||||
|
||||
|
||||
@ -227,7 +229,7 @@ if (web_root_path / "dist").exists():
|
||||
def get_index() -> FileResponse:
|
||||
return FileResponse(Path(web_root_path, "dist/index.html"), headers={"Cache-Control": "no-store"})
|
||||
|
||||
# # Must mount *after* the other routes else it borks em
|
||||
# Must mount *after* the other routes else it borks em
|
||||
app.mount("/assets", StaticFiles(directory=Path(web_root_path, "dist/assets/")), name="assets")
|
||||
app.mount("/locales", StaticFiles(directory=Path(web_root_path, "dist/locales/")), name="locales")
|
||||
|
||||
|
@ -1,4 +1,3 @@
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Union
|
||||
|
||||
@ -17,6 +16,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.models import ModelNotFoundException, ModelType
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ..util.ti_utils import extract_ti_triggers_from_prompt
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
@ -87,7 +87,7 @@ class CompelInvocation(BaseInvocation):
|
||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list = []
|
||||
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
|
||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
ti_list.append(
|
||||
@ -210,7 +210,7 @@ class SDXLPromptInvocationBase:
|
||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list = []
|
||||
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
||||
for trigger in extract_ti_triggers_from_prompt(prompt):
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
ti_list.append(
|
||||
|
@ -24,9 +24,10 @@ from controlnet_aux import (
|
||||
)
|
||||
from controlnet_aux.util import HWC3, ade_palette
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
|
||||
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||||
from invokeai.app.shared.fields import FieldDescriptions
|
||||
|
||||
@ -75,17 +76,16 @@ class ControlField(BaseModel):
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
||||
|
||||
@field_validator("control_weight")
|
||||
@classmethod
|
||||
def validate_control_weight(cls, v):
|
||||
"""Validate that all control weights in the valid range"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < -1 or i > 2:
|
||||
raise ValueError("Control weights must be within -1 to 2 range")
|
||||
else:
|
||||
if v < -1 or v > 2:
|
||||
raise ValueError("Control weights must be within -1 to 2 range")
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
|
||||
@invocation_output("control_output")
|
||||
class ControlOutput(BaseInvocationOutput):
|
||||
@ -95,17 +95,17 @@ class ControlOutput(BaseInvocationOutput):
|
||||
control: ControlField = OutputField(description=FieldDescriptions.control)
|
||||
|
||||
|
||||
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.0")
|
||||
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet", version="1.1.1")
|
||||
class ControlNetInvocation(BaseInvocation):
|
||||
"""Collects ControlNet info to pass to other nodes"""
|
||||
|
||||
image: ImageField = InputField(description="The control image")
|
||||
control_model: ControlNetModelField = InputField(description=FieldDescriptions.controlnet_model, input=Input.Direct)
|
||||
control_weight: Union[float, List[float]] = InputField(
|
||||
default=1.0, description="The weight given to the ControlNet"
|
||||
default=1.0, ge=-1, le=2, description="The weight given to the ControlNet"
|
||||
)
|
||||
begin_step_percent: float = InputField(
|
||||
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
|
||||
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
|
||||
)
|
||||
end_step_percent: float = InputField(
|
||||
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
||||
@ -113,6 +113,17 @@ class ControlNetInvocation(BaseInvocation):
|
||||
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
|
||||
|
||||
@field_validator("control_weight")
|
||||
@classmethod
|
||||
def validate_control_weight(cls, v):
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self) -> "ControlNetInvocation":
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ControlOutput:
|
||||
return ControlOutput(
|
||||
control=ControlField(
|
||||
|
@ -2,7 +2,7 @@ import os
|
||||
from builtins import float
|
||||
from typing import List, Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -15,6 +15,7 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
invocation_output,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.shared.fields import FieldDescriptions
|
||||
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
|
||||
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
|
||||
@ -39,7 +40,6 @@ class IPAdapterField(BaseModel):
|
||||
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
|
||||
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
|
||||
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
|
||||
# weight: float = Field(default=1.0, ge=0, description="The weight of the IP-Adapter.")
|
||||
begin_step_percent: float = Field(
|
||||
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
|
||||
)
|
||||
@ -47,6 +47,17 @@ class IPAdapterField(BaseModel):
|
||||
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
||||
)
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
|
||||
@invocation_output("ip_adapter_output")
|
||||
class IPAdapterOutput(BaseInvocationOutput):
|
||||
@ -54,7 +65,7 @@ class IPAdapterOutput(BaseInvocationOutput):
|
||||
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
|
||||
|
||||
|
||||
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.0")
|
||||
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.1")
|
||||
class IPAdapterInvocation(BaseInvocation):
|
||||
"""Collects IP-Adapter info to pass to other nodes."""
|
||||
|
||||
@ -64,18 +75,27 @@ class IPAdapterInvocation(BaseInvocation):
|
||||
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
|
||||
)
|
||||
|
||||
# weight: float = InputField(default=1.0, description="The weight of the IP-Adapter.", ui_type=UIType.Float)
|
||||
weight: Union[float, List[float]] = InputField(
|
||||
default=1, ge=-1, description="The weight given to the IP-Adapter", title="Weight"
|
||||
default=1, description="The weight given to the IP-Adapter", title="Weight"
|
||||
)
|
||||
|
||||
begin_step_percent: float = InputField(
|
||||
default=0, ge=-1, le=2, description="When the IP-Adapter is first applied (% of total steps)"
|
||||
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
|
||||
)
|
||||
end_step_percent: float = InputField(
|
||||
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
|
||||
)
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
|
||||
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
|
||||
ip_adapter_info = context.services.model_manager.model_info(
|
||||
|
@ -220,7 +220,7 @@ def get_scheduler(
|
||||
title="Denoise Latents",
|
||||
tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"],
|
||||
category="latents",
|
||||
version="1.5.0",
|
||||
version="1.5.1",
|
||||
)
|
||||
class DenoiseLatentsInvocation(BaseInvocation):
|
||||
"""Denoises noisy latents to decodable images"""
|
||||
@ -279,7 +279,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
ui_order=7,
|
||||
)
|
||||
cfg_rescale_multiplier: float = InputField(
|
||||
default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
)
|
||||
latents: Optional[LatentsField] = InputField(
|
||||
default=None,
|
||||
|
@ -1,7 +1,6 @@
|
||||
# Copyright (c) 2023 Borisov Sergey (https://github.com/StAlKeR7779)
|
||||
|
||||
import inspect
|
||||
import re
|
||||
|
||||
# from contextlib import ExitStack
|
||||
from typing import List, Literal, Union
|
||||
@ -21,6 +20,7 @@ from invokeai.backend import BaseModelType, ModelType, SubModelType
|
||||
from ...backend.model_management import ONNXModelPatcher
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.util import choose_torch_device
|
||||
from ..util.ti_utils import extract_ti_triggers_from_prompt
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
@ -78,7 +78,7 @@ class ONNXPromptInvocation(BaseInvocation):
|
||||
]
|
||||
|
||||
ti_list = []
|
||||
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
|
||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
ti_list.append(
|
||||
|
@ -1,6 +1,6 @@
|
||||
from typing import Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -14,6 +14,7 @@ from invokeai.app.invocations.baseinvocation import (
|
||||
)
|
||||
from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.app.invocations.primitives import ImageField
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.shared.fields import FieldDescriptions
|
||||
from invokeai.backend.model_management.models.base import BaseModelType
|
||||
|
||||
@ -37,6 +38,17 @@ class T2IAdapterField(BaseModel):
|
||||
)
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
|
||||
@invocation_output("t2i_adapter_output")
|
||||
class T2IAdapterOutput(BaseInvocationOutput):
|
||||
@ -44,7 +56,7 @@ class T2IAdapterOutput(BaseInvocationOutput):
|
||||
|
||||
|
||||
@invocation(
|
||||
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.0"
|
||||
"t2i_adapter", title="T2I-Adapter", tags=["t2i_adapter", "control"], category="t2i_adapter", version="1.0.1"
|
||||
)
|
||||
class T2IAdapterInvocation(BaseInvocation):
|
||||
"""Collects T2I-Adapter info to pass to other nodes."""
|
||||
@ -61,7 +73,7 @@ class T2IAdapterInvocation(BaseInvocation):
|
||||
default=1, ge=0, description="The weight given to the T2I-Adapter", title="Weight"
|
||||
)
|
||||
begin_step_percent: float = InputField(
|
||||
default=0, ge=-1, le=2, description="When the T2I-Adapter is first applied (% of total steps)"
|
||||
default=0, ge=0, le=1, description="When the T2I-Adapter is first applied (% of total steps)"
|
||||
)
|
||||
end_step_percent: float = InputField(
|
||||
default=1, ge=0, le=1, description="When the T2I-Adapter is last applied (% of total steps)"
|
||||
@ -71,6 +83,17 @@ class T2IAdapterInvocation(BaseInvocation):
|
||||
description="The resize mode applied to the T2I-Adapter input image so that it matches the target output size.",
|
||||
)
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
def invoke(self, context: InvocationContext) -> T2IAdapterOutput:
|
||||
return T2IAdapterOutput(
|
||||
t2i_adapter=T2IAdapterField(
|
||||
|
@ -77,7 +77,7 @@ class CalculateImageTilesInvocation(BaseInvocation):
|
||||
title="Calculate Image Tiles Even Split",
|
||||
tags=["tiles"],
|
||||
category="tiles",
|
||||
version="1.0.0",
|
||||
version="1.1.0",
|
||||
classification=Classification.Beta,
|
||||
)
|
||||
class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
|
||||
@ -97,11 +97,11 @@ class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
|
||||
ge=1,
|
||||
description="Number of tiles to divide image into on the y axis",
|
||||
)
|
||||
overlap_fraction: float = InputField(
|
||||
default=0.25,
|
||||
overlap: int = InputField(
|
||||
default=128,
|
||||
ge=0,
|
||||
lt=1,
|
||||
description="Overlap between adjacent tiles as a fraction of the tile's dimensions (0-1)",
|
||||
multiple_of=8,
|
||||
description="The overlap, in pixels, between adjacent tiles.",
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
|
||||
@ -110,7 +110,7 @@ class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
|
||||
image_width=self.image_width,
|
||||
num_tiles_x=self.num_tiles_x,
|
||||
num_tiles_y=self.num_tiles_y,
|
||||
overlap_fraction=self.overlap_fraction,
|
||||
overlap=self.overlap,
|
||||
)
|
||||
return CalculateImageTilesOutput(tiles=tiles)
|
||||
|
||||
|
14
invokeai/app/invocations/util.py
Normal file
@ -0,0 +1,14 @@
|
||||
from typing import Union
|
||||
|
||||
|
||||
def validate_weights(weights: Union[float, list[float]]) -> None:
|
||||
"""Validate that all control weights in the valid range"""
|
||||
to_validate = weights if isinstance(weights, list) else [weights]
|
||||
if any(i < -1 or i > 2 for i in to_validate):
|
||||
raise ValueError("Control weights must be within -1 to 2 range")
|
||||
|
||||
|
||||
def validate_begin_end_step(begin_step_percent: float, end_step_percent: float) -> None:
|
||||
"""Validate that begin_step_percent is less than end_step_percent"""
|
||||
if begin_step_percent >= end_step_percent:
|
||||
raise ValueError("Begin step percent must be less than or equal to end step percent")
|
@ -1,5 +1,7 @@
|
||||
"""Init file for InvokeAI configure package."""
|
||||
|
||||
from invokeai.app.services.config.config_common import PagingArgumentParser
|
||||
|
||||
from .config_default import InvokeAIAppConfig, get_invokeai_config
|
||||
|
||||
__all__ = ["InvokeAIAppConfig", "get_invokeai_config"]
|
||||
__all__ = ["InvokeAIAppConfig", "get_invokeai_config", "PagingArgumentParser"]
|
||||
|
@ -356,7 +356,7 @@ class InvokeAIAppConfig(InvokeAISettings):
|
||||
else:
|
||||
root = self.find_root().expanduser().absolute()
|
||||
self.root = root # insulate ourselves from relative paths that may change
|
||||
return root
|
||||
return root.resolve()
|
||||
|
||||
@property
|
||||
def root_dir(self) -> Path:
|
||||
|
12
invokeai/app/services/download/__init__.py
Normal file
@ -0,0 +1,12 @@
|
||||
"""Init file for download queue."""
|
||||
from .download_base import DownloadJob, DownloadJobStatus, DownloadQueueServiceBase, UnknownJobIDException
|
||||
from .download_default import DownloadQueueService, TqdmProgress
|
||||
|
||||
__all__ = [
|
||||
"DownloadJob",
|
||||
"DownloadQueueServiceBase",
|
||||
"DownloadQueueService",
|
||||
"TqdmProgress",
|
||||
"DownloadJobStatus",
|
||||
"UnknownJobIDException",
|
||||
]
|
217
invokeai/app/services/download/download_base.py
Normal file
@ -0,0 +1,217 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""Model download service."""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from functools import total_ordering
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
|
||||
|
||||
class DownloadJobStatus(str, Enum):
|
||||
"""State of a download job."""
|
||||
|
||||
WAITING = "waiting" # not enqueued, will not run
|
||||
RUNNING = "running" # actively downloading
|
||||
COMPLETED = "completed" # finished running
|
||||
CANCELLED = "cancelled" # user cancelled
|
||||
ERROR = "error" # terminated with an error message
|
||||
|
||||
|
||||
class DownloadJobCancelledException(Exception):
|
||||
"""This exception is raised when a download job is cancelled."""
|
||||
|
||||
|
||||
class UnknownJobIDException(Exception):
|
||||
"""This exception is raised when an invalid job id is referened."""
|
||||
|
||||
|
||||
class ServiceInactiveException(Exception):
|
||||
"""This exception is raised when user attempts to initiate a download before the service is started."""
|
||||
|
||||
|
||||
DownloadEventHandler = Callable[["DownloadJob"], None]
|
||||
|
||||
|
||||
@total_ordering
|
||||
class DownloadJob(BaseModel):
|
||||
"""Class to monitor and control a model download request."""
|
||||
|
||||
# required variables to be passed in on creation
|
||||
source: AnyHttpUrl = Field(description="Where to download from. Specific types specified in child classes.")
|
||||
dest: Path = Field(description="Destination of downloaded model on local disk; a directory or file path")
|
||||
access_token: Optional[str] = Field(default=None, description="authorization token for protected resources")
|
||||
# automatically assigned on creation
|
||||
id: int = Field(description="Numeric ID of this job", default=-1) # default id is a sentinel
|
||||
priority: int = Field(default=10, description="Queue priority; lower values are higher priority")
|
||||
|
||||
# set internally during download process
|
||||
status: DownloadJobStatus = Field(default=DownloadJobStatus.WAITING, description="Status of the download")
|
||||
download_path: Optional[Path] = Field(default=None, description="Final location of downloaded file")
|
||||
job_started: Optional[str] = Field(default=None, description="Timestamp for when the download job started")
|
||||
job_ended: Optional[str] = Field(
|
||||
default=None, description="Timestamp for when the download job ende1d (completed or errored)"
|
||||
)
|
||||
bytes: int = Field(default=0, description="Bytes downloaded so far")
|
||||
total_bytes: int = Field(default=0, description="Total file size (bytes)")
|
||||
|
||||
# set when an error occurs
|
||||
error_type: Optional[str] = Field(default=None, description="Name of exception that caused an error")
|
||||
error: Optional[str] = Field(default=None, description="Traceback of the exception that caused an error")
|
||||
|
||||
# internal flag
|
||||
_cancelled: bool = PrivateAttr(default=False)
|
||||
|
||||
# optional event handlers passed in on creation
|
||||
_on_start: Optional[DownloadEventHandler] = PrivateAttr(default=None)
|
||||
_on_progress: Optional[DownloadEventHandler] = PrivateAttr(default=None)
|
||||
_on_complete: Optional[DownloadEventHandler] = PrivateAttr(default=None)
|
||||
_on_cancelled: Optional[DownloadEventHandler] = PrivateAttr(default=None)
|
||||
_on_error: Optional[DownloadEventHandler] = PrivateAttr(default=None)
|
||||
|
||||
def __le__(self, other: "DownloadJob") -> bool:
|
||||
"""Return True if this job's priority is less than another's."""
|
||||
return self.priority <= other.priority
|
||||
|
||||
def cancel(self) -> None:
|
||||
"""Call to cancel the job."""
|
||||
self._cancelled = True
|
||||
|
||||
# cancelled and the callbacks are private attributes in order to prevent
|
||||
# them from being serialized and/or used in the Json Schema
|
||||
@property
|
||||
def cancelled(self) -> bool:
|
||||
"""Call to cancel the job."""
|
||||
return self._cancelled
|
||||
|
||||
@property
|
||||
def on_start(self) -> Optional[DownloadEventHandler]:
|
||||
"""Return the on_start event handler."""
|
||||
return self._on_start
|
||||
|
||||
@property
|
||||
def on_progress(self) -> Optional[DownloadEventHandler]:
|
||||
"""Return the on_progress event handler."""
|
||||
return self._on_progress
|
||||
|
||||
@property
|
||||
def on_complete(self) -> Optional[DownloadEventHandler]:
|
||||
"""Return the on_complete event handler."""
|
||||
return self._on_complete
|
||||
|
||||
@property
|
||||
def on_error(self) -> Optional[DownloadEventHandler]:
|
||||
"""Return the on_error event handler."""
|
||||
return self._on_error
|
||||
|
||||
@property
|
||||
def on_cancelled(self) -> Optional[DownloadEventHandler]:
|
||||
"""Return the on_cancelled event handler."""
|
||||
return self._on_cancelled
|
||||
|
||||
def set_callbacks(
|
||||
self,
|
||||
on_start: Optional[DownloadEventHandler] = None,
|
||||
on_progress: Optional[DownloadEventHandler] = None,
|
||||
on_complete: Optional[DownloadEventHandler] = None,
|
||||
on_cancelled: Optional[DownloadEventHandler] = None,
|
||||
on_error: Optional[DownloadEventHandler] = None,
|
||||
) -> None:
|
||||
"""Set the callbacks for download events."""
|
||||
self._on_start = on_start
|
||||
self._on_progress = on_progress
|
||||
self._on_complete = on_complete
|
||||
self._on_error = on_error
|
||||
self._on_cancelled = on_cancelled
|
||||
|
||||
|
||||
class DownloadQueueServiceBase(ABC):
|
||||
"""Multithreaded queue for downloading models via URL."""
|
||||
|
||||
@abstractmethod
|
||||
def start(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Start the download worker threads."""
|
||||
|
||||
@abstractmethod
|
||||
def stop(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Stop the download worker threads."""
|
||||
|
||||
@abstractmethod
|
||||
def download(
|
||||
self,
|
||||
source: AnyHttpUrl,
|
||||
dest: Path,
|
||||
priority: int = 10,
|
||||
access_token: Optional[str] = None,
|
||||
on_start: Optional[DownloadEventHandler] = None,
|
||||
on_progress: Optional[DownloadEventHandler] = None,
|
||||
on_complete: Optional[DownloadEventHandler] = None,
|
||||
on_cancelled: Optional[DownloadEventHandler] = None,
|
||||
on_error: Optional[DownloadEventHandler] = None,
|
||||
) -> DownloadJob:
|
||||
"""
|
||||
Create a download job.
|
||||
|
||||
:param source: Source of the download as a URL.
|
||||
:param dest: Path to download to. See below.
|
||||
:param on_start, on_progress, on_complete, on_error: Callbacks for the indicated
|
||||
events.
|
||||
:returns: A DownloadJob object for monitoring the state of the download.
|
||||
|
||||
The `dest` argument is a Path object. Its behavior is:
|
||||
|
||||
1. If the path exists and is a directory, then the URL contents will be downloaded
|
||||
into that directory using the filename indicated in the response's `Content-Disposition` field.
|
||||
If no content-disposition is present, then the last component of the URL will be used (similar to
|
||||
wget's behavior).
|
||||
2. If the path does not exist, then it is taken as the name of a new file to create with the downloaded
|
||||
content.
|
||||
3. If the path exists and is an existing file, then the downloader will try to resume the download from
|
||||
the end of the existing file.
|
||||
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def list_jobs(self) -> List[DownloadJob]:
|
||||
"""
|
||||
List active download jobs.
|
||||
|
||||
:returns List[DownloadJob]: List of download jobs whose state is not "completed."
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def id_to_job(self, id: int) -> DownloadJob:
|
||||
"""
|
||||
Return the DownloadJob corresponding to the integer ID.
|
||||
|
||||
:param id: ID of the DownloadJob.
|
||||
|
||||
Exceptions:
|
||||
* UnknownJobIDException
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_all_jobs(self):
|
||||
"""Cancel all active and enquedjobs."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def prune_jobs(self):
|
||||
"""Prune completed and errored queue items from the job list."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def cancel_job(self, job: DownloadJob):
|
||||
"""Cancel the job, clearing partial downloads and putting it into ERROR state."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def join(self):
|
||||
"""Wait until all jobs are off the queue."""
|
||||
pass
|
418
invokeai/app/services/download/download_default.py
Normal file
@ -0,0 +1,418 @@
|
||||
# Copyright (c) 2023, Lincoln D. Stein
|
||||
"""Implementation of multithreaded download queue for invokeai."""
|
||||
|
||||
import os
|
||||
import re
|
||||
import threading
|
||||
import traceback
|
||||
from logging import Logger
|
||||
from pathlib import Path
|
||||
from queue import Empty, PriorityQueue
|
||||
from typing import Any, Dict, List, Optional, Set
|
||||
|
||||
import requests
|
||||
from pydantic.networks import AnyHttpUrl
|
||||
from requests import HTTPError
|
||||
from tqdm import tqdm
|
||||
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
from invokeai.app.util.misc import get_iso_timestamp
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .download_base import (
|
||||
DownloadEventHandler,
|
||||
DownloadJob,
|
||||
DownloadJobCancelledException,
|
||||
DownloadJobStatus,
|
||||
DownloadQueueServiceBase,
|
||||
ServiceInactiveException,
|
||||
UnknownJobIDException,
|
||||
)
|
||||
|
||||
# Maximum number of bytes to download during each call to requests.iter_content()
|
||||
DOWNLOAD_CHUNK_SIZE = 100000
|
||||
|
||||
|
||||
class DownloadQueueService(DownloadQueueServiceBase):
|
||||
"""Class for queued download of models."""
|
||||
|
||||
_jobs: Dict[int, DownloadJob]
|
||||
_max_parallel_dl: int = 5
|
||||
_worker_pool: Set[threading.Thread]
|
||||
_queue: PriorityQueue[DownloadJob]
|
||||
_stop_event: threading.Event
|
||||
_lock: threading.Lock
|
||||
_logger: Logger
|
||||
_events: Optional[EventServiceBase] = None
|
||||
_next_job_id: int = 0
|
||||
_accept_download_requests: bool = False
|
||||
_requests: requests.sessions.Session
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_parallel_dl: int = 5,
|
||||
event_bus: Optional[EventServiceBase] = None,
|
||||
requests_session: Optional[requests.sessions.Session] = None,
|
||||
):
|
||||
"""
|
||||
Initialize DownloadQueue.
|
||||
|
||||
:param max_parallel_dl: Number of simultaneous downloads allowed [5].
|
||||
:param requests_session: Optional requests.sessions.Session object, for unit tests.
|
||||
"""
|
||||
self._jobs = {}
|
||||
self._next_job_id = 0
|
||||
self._queue = PriorityQueue()
|
||||
self._stop_event = threading.Event()
|
||||
self._worker_pool = set()
|
||||
self._lock = threading.Lock()
|
||||
self._logger = InvokeAILogger.get_logger("DownloadQueueService")
|
||||
self._event_bus = event_bus
|
||||
self._requests = requests_session or requests.Session()
|
||||
self._accept_download_requests = False
|
||||
self._max_parallel_dl = max_parallel_dl
|
||||
|
||||
def start(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Start the download worker threads."""
|
||||
with self._lock:
|
||||
if self._worker_pool:
|
||||
raise Exception("Attempt to start the download service twice")
|
||||
self._stop_event.clear()
|
||||
self._start_workers(self._max_parallel_dl)
|
||||
self._accept_download_requests = True
|
||||
|
||||
def stop(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Stop the download worker threads."""
|
||||
with self._lock:
|
||||
if not self._worker_pool:
|
||||
raise Exception("Attempt to stop the download service before it was started")
|
||||
self._accept_download_requests = False # reject attempts to add new jobs to queue
|
||||
queued_jobs = [x for x in self.list_jobs() if x.status == DownloadJobStatus.WAITING]
|
||||
active_jobs = [x for x in self.list_jobs() if x.status == DownloadJobStatus.RUNNING]
|
||||
if queued_jobs:
|
||||
self._logger.warning(f"Cancelling {len(queued_jobs)} queued downloads")
|
||||
if active_jobs:
|
||||
self._logger.info(f"Waiting for {len(active_jobs)} active download jobs to complete")
|
||||
with self._queue.mutex:
|
||||
self._queue.queue.clear()
|
||||
self.join() # wait for all active jobs to finish
|
||||
self._stop_event.set()
|
||||
self._worker_pool.clear()
|
||||
|
||||
def download(
|
||||
self,
|
||||
source: AnyHttpUrl,
|
||||
dest: Path,
|
||||
priority: int = 10,
|
||||
access_token: Optional[str] = None,
|
||||
on_start: Optional[DownloadEventHandler] = None,
|
||||
on_progress: Optional[DownloadEventHandler] = None,
|
||||
on_complete: Optional[DownloadEventHandler] = None,
|
||||
on_cancelled: Optional[DownloadEventHandler] = None,
|
||||
on_error: Optional[DownloadEventHandler] = None,
|
||||
) -> DownloadJob:
|
||||
"""Create a download job and return its ID."""
|
||||
if not self._accept_download_requests:
|
||||
raise ServiceInactiveException(
|
||||
"The download service is not currently accepting requests. Please call start() to initialize the service."
|
||||
)
|
||||
with self._lock:
|
||||
id = self._next_job_id
|
||||
self._next_job_id += 1
|
||||
job = DownloadJob(
|
||||
id=id,
|
||||
source=source,
|
||||
dest=dest,
|
||||
priority=priority,
|
||||
access_token=access_token,
|
||||
)
|
||||
job.set_callbacks(
|
||||
on_start=on_start,
|
||||
on_progress=on_progress,
|
||||
on_complete=on_complete,
|
||||
on_cancelled=on_cancelled,
|
||||
on_error=on_error,
|
||||
)
|
||||
self._jobs[id] = job
|
||||
self._queue.put(job)
|
||||
return job
|
||||
|
||||
def join(self) -> None:
|
||||
"""Wait for all jobs to complete."""
|
||||
self._queue.join()
|
||||
|
||||
def list_jobs(self) -> List[DownloadJob]:
|
||||
"""List all the jobs."""
|
||||
return list(self._jobs.values())
|
||||
|
||||
def prune_jobs(self) -> None:
|
||||
"""Prune completed and errored queue items from the job list."""
|
||||
with self._lock:
|
||||
to_delete = set()
|
||||
for job_id, job in self._jobs.items():
|
||||
if self._in_terminal_state(job):
|
||||
to_delete.add(job_id)
|
||||
for job_id in to_delete:
|
||||
del self._jobs[job_id]
|
||||
|
||||
def id_to_job(self, id: int) -> DownloadJob:
|
||||
"""Translate a job ID into a DownloadJob object."""
|
||||
try:
|
||||
return self._jobs[id]
|
||||
except KeyError as excp:
|
||||
raise UnknownJobIDException("Unrecognized job") from excp
|
||||
|
||||
def cancel_job(self, job: DownloadJob) -> None:
|
||||
"""
|
||||
Cancel the indicated job.
|
||||
|
||||
If it is running it will be stopped.
|
||||
job.status will be set to DownloadJobStatus.CANCELLED
|
||||
"""
|
||||
with self._lock:
|
||||
job.cancel()
|
||||
|
||||
def cancel_all_jobs(self, preserve_partial: bool = False) -> None:
|
||||
"""Cancel all jobs (those not in enqueued, running or paused state)."""
|
||||
for job in self._jobs.values():
|
||||
if not self._in_terminal_state(job):
|
||||
self.cancel_job(job)
|
||||
|
||||
def _in_terminal_state(self, job: DownloadJob) -> bool:
|
||||
return job.status in [
|
||||
DownloadJobStatus.COMPLETED,
|
||||
DownloadJobStatus.CANCELLED,
|
||||
DownloadJobStatus.ERROR,
|
||||
]
|
||||
|
||||
def _start_workers(self, max_workers: int) -> None:
|
||||
"""Start the requested number of worker threads."""
|
||||
self._stop_event.clear()
|
||||
for i in range(0, max_workers): # noqa B007
|
||||
worker = threading.Thread(target=self._download_next_item, daemon=True)
|
||||
self._logger.debug(f"Download queue worker thread {worker.name} starting.")
|
||||
worker.start()
|
||||
self._worker_pool.add(worker)
|
||||
|
||||
def _download_next_item(self) -> None:
|
||||
"""Worker thread gets next job on priority queue."""
|
||||
done = False
|
||||
while not done:
|
||||
if self._stop_event.is_set():
|
||||
done = True
|
||||
continue
|
||||
try:
|
||||
job = self._queue.get(timeout=1)
|
||||
except Empty:
|
||||
continue
|
||||
|
||||
try:
|
||||
job.job_started = get_iso_timestamp()
|
||||
self._do_download(job)
|
||||
self._signal_job_complete(job)
|
||||
|
||||
except (OSError, HTTPError) as excp:
|
||||
job.error_type = excp.__class__.__name__ + f"({str(excp)})"
|
||||
job.error = traceback.format_exc()
|
||||
self._signal_job_error(job)
|
||||
except DownloadJobCancelledException:
|
||||
self._signal_job_cancelled(job)
|
||||
self._cleanup_cancelled_job(job)
|
||||
|
||||
finally:
|
||||
job.job_ended = get_iso_timestamp()
|
||||
self._queue.task_done()
|
||||
self._logger.debug(f"Download queue worker thread {threading.current_thread().name} exiting.")
|
||||
|
||||
def _do_download(self, job: DownloadJob) -> None:
|
||||
"""Do the actual download."""
|
||||
url = job.source
|
||||
header = {"Authorization": f"Bearer {job.access_token}"} if job.access_token else {}
|
||||
open_mode = "wb"
|
||||
|
||||
# Make a streaming request. This will retrieve headers including
|
||||
# content-length and content-disposition, but not fetch any content itself
|
||||
resp = self._requests.get(str(url), headers=header, stream=True)
|
||||
if not resp.ok:
|
||||
raise HTTPError(resp.reason)
|
||||
content_length = int(resp.headers.get("content-length", 0))
|
||||
job.total_bytes = content_length
|
||||
|
||||
if job.dest.is_dir():
|
||||
file_name = os.path.basename(str(url.path)) # default is to use the last bit of the URL
|
||||
|
||||
if match := re.search('filename="(.+)"', resp.headers.get("Content-Disposition", "")):
|
||||
remote_name = match.group(1)
|
||||
if self._validate_filename(job.dest.as_posix(), remote_name):
|
||||
file_name = remote_name
|
||||
|
||||
job.download_path = job.dest / file_name
|
||||
|
||||
else:
|
||||
job.dest.parent.mkdir(parents=True, exist_ok=True)
|
||||
job.download_path = job.dest
|
||||
|
||||
assert job.download_path
|
||||
|
||||
# Don't clobber an existing file. See commit 82c2c85202f88c6d24ff84710f297cfc6ae174af
|
||||
# for code that instead resumes an interrupted download.
|
||||
if job.download_path.exists():
|
||||
raise OSError(f"[Errno 17] File {job.download_path} exists")
|
||||
|
||||
# append ".downloading" to the path
|
||||
in_progress_path = self._in_progress_path(job.download_path)
|
||||
|
||||
# signal caller that the download is starting. At this point, key fields such as
|
||||
# download_path and total_bytes will be populated. We call it here because the might
|
||||
# discover that the local file is already complete and generate a COMPLETED status.
|
||||
self._signal_job_started(job)
|
||||
|
||||
# "range not satisfiable" - local file is at least as large as the remote file
|
||||
if resp.status_code == 416 or (content_length > 0 and job.bytes >= content_length):
|
||||
self._logger.warning(f"{job.download_path}: complete file found. Skipping.")
|
||||
return
|
||||
|
||||
# "partial content" - local file is smaller than remote file
|
||||
elif resp.status_code == 206 or job.bytes > 0:
|
||||
self._logger.warning(f"{job.download_path}: partial file found. Resuming")
|
||||
|
||||
# some other error
|
||||
elif resp.status_code != 200:
|
||||
raise HTTPError(resp.reason)
|
||||
|
||||
self._logger.debug(f"{job.source}: Downloading {job.download_path}")
|
||||
report_delta = job.total_bytes / 100 # report every 1% change
|
||||
last_report_bytes = 0
|
||||
|
||||
# DOWNLOAD LOOP
|
||||
with open(in_progress_path, open_mode) as file:
|
||||
for data in resp.iter_content(chunk_size=DOWNLOAD_CHUNK_SIZE):
|
||||
if job.cancelled:
|
||||
raise DownloadJobCancelledException("Job was cancelled at caller's request")
|
||||
|
||||
job.bytes += file.write(data)
|
||||
if (job.bytes - last_report_bytes >= report_delta) or (job.bytes >= job.total_bytes):
|
||||
last_report_bytes = job.bytes
|
||||
self._signal_job_progress(job)
|
||||
|
||||
# if we get here we are done and can rename the file to the original dest
|
||||
in_progress_path.rename(job.download_path)
|
||||
|
||||
def _validate_filename(self, directory: str, filename: str) -> bool:
|
||||
pc_name_max = os.pathconf(directory, "PC_NAME_MAX") if hasattr(os, "pathconf") else 260 # hardcoded for windows
|
||||
pc_path_max = (
|
||||
os.pathconf(directory, "PC_PATH_MAX") if hasattr(os, "pathconf") else 32767
|
||||
) # hardcoded for windows with long names enabled
|
||||
if "/" in filename:
|
||||
return False
|
||||
if filename.startswith(".."):
|
||||
return False
|
||||
if len(filename) > pc_name_max:
|
||||
return False
|
||||
if len(os.path.join(directory, filename)) > pc_path_max:
|
||||
return False
|
||||
return True
|
||||
|
||||
def _in_progress_path(self, path: Path) -> Path:
|
||||
return path.with_name(path.name + ".downloading")
|
||||
|
||||
def _signal_job_started(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.RUNNING
|
||||
if job.on_start:
|
||||
try:
|
||||
job.on_start(job)
|
||||
except Exception as e:
|
||||
self._logger.error(e)
|
||||
if self._event_bus:
|
||||
assert job.download_path
|
||||
self._event_bus.emit_download_started(str(job.source), job.download_path.as_posix())
|
||||
|
||||
def _signal_job_progress(self, job: DownloadJob) -> None:
|
||||
if job.on_progress:
|
||||
try:
|
||||
job.on_progress(job)
|
||||
except Exception as e:
|
||||
self._logger.error(e)
|
||||
if self._event_bus:
|
||||
assert job.download_path
|
||||
self._event_bus.emit_download_progress(
|
||||
str(job.source),
|
||||
download_path=job.download_path.as_posix(),
|
||||
current_bytes=job.bytes,
|
||||
total_bytes=job.total_bytes,
|
||||
)
|
||||
|
||||
def _signal_job_complete(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.COMPLETED
|
||||
if job.on_complete:
|
||||
try:
|
||||
job.on_complete(job)
|
||||
except Exception as e:
|
||||
self._logger.error(e)
|
||||
if self._event_bus:
|
||||
assert job.download_path
|
||||
self._event_bus.emit_download_complete(
|
||||
str(job.source), download_path=job.download_path.as_posix(), total_bytes=job.total_bytes
|
||||
)
|
||||
|
||||
def _signal_job_cancelled(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.CANCELLED
|
||||
if job.on_cancelled:
|
||||
try:
|
||||
job.on_cancelled(job)
|
||||
except Exception as e:
|
||||
self._logger.error(e)
|
||||
if self._event_bus:
|
||||
self._event_bus.emit_download_cancelled(str(job.source))
|
||||
|
||||
def _signal_job_error(self, job: DownloadJob) -> None:
|
||||
job.status = DownloadJobStatus.ERROR
|
||||
if job.on_error:
|
||||
try:
|
||||
job.on_error(job)
|
||||
except Exception as e:
|
||||
self._logger.error(e)
|
||||
if self._event_bus:
|
||||
assert job.error_type
|
||||
assert job.error
|
||||
self._event_bus.emit_download_error(str(job.source), error_type=job.error_type, error=job.error)
|
||||
|
||||
def _cleanup_cancelled_job(self, job: DownloadJob) -> None:
|
||||
self._logger.warning(f"Cleaning up leftover files from cancelled download job {job.download_path}")
|
||||
try:
|
||||
if job.download_path:
|
||||
partial_file = self._in_progress_path(job.download_path)
|
||||
partial_file.unlink()
|
||||
except OSError as excp:
|
||||
self._logger.warning(excp)
|
||||
|
||||
|
||||
# Example on_progress event handler to display a TQDM status bar
|
||||
# Activate with:
|
||||
# download_service.download('http://foo.bar/baz', '/tmp', on_progress=TqdmProgress().job_update
|
||||
class TqdmProgress(object):
|
||||
"""TQDM-based progress bar object to use in on_progress handlers."""
|
||||
|
||||
_bars: Dict[int, tqdm] # the tqdm object
|
||||
_last: Dict[int, int] # last bytes downloaded
|
||||
|
||||
def __init__(self) -> None: # noqa D107
|
||||
self._bars = {}
|
||||
self._last = {}
|
||||
|
||||
def update(self, job: DownloadJob) -> None: # noqa D102
|
||||
job_id = job.id
|
||||
# new job
|
||||
if job_id not in self._bars:
|
||||
assert job.download_path
|
||||
dest = Path(job.download_path).name
|
||||
self._bars[job_id] = tqdm(
|
||||
desc=dest,
|
||||
initial=0,
|
||||
total=job.total_bytes,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
)
|
||||
self._last[job_id] = 0
|
||||
self._bars[job_id].update(job.bytes - self._last[job_id])
|
||||
self._last[job_id] = job.bytes
|
@ -17,6 +17,7 @@ from invokeai.backend.model_management.models.base import BaseModelType, ModelTy
|
||||
|
||||
class EventServiceBase:
|
||||
queue_event: str = "queue_event"
|
||||
download_event: str = "download_event"
|
||||
model_event: str = "model_event"
|
||||
|
||||
"""Basic event bus, to have an empty stand-in when not needed"""
|
||||
@ -32,6 +33,13 @@ class EventServiceBase:
|
||||
payload={"event": event_name, "data": payload},
|
||||
)
|
||||
|
||||
def __emit_download_event(self, event_name: str, payload: dict) -> None:
|
||||
payload["timestamp"] = get_timestamp()
|
||||
self.dispatch(
|
||||
event_name=EventServiceBase.download_event,
|
||||
payload={"event": event_name, "data": payload},
|
||||
)
|
||||
|
||||
def __emit_model_event(self, event_name: str, payload: dict) -> None:
|
||||
payload["timestamp"] = get_timestamp()
|
||||
self.dispatch(
|
||||
@ -323,6 +331,79 @@ class EventServiceBase:
|
||||
payload={"queue_id": queue_id},
|
||||
)
|
||||
|
||||
def emit_download_started(self, source: str, download_path: str) -> None:
|
||||
"""
|
||||
Emit when a download job is started.
|
||||
|
||||
:param url: The downloaded url
|
||||
"""
|
||||
self.__emit_download_event(
|
||||
event_name="download_started",
|
||||
payload={"source": source, "download_path": download_path},
|
||||
)
|
||||
|
||||
def emit_download_progress(self, source: str, download_path: str, current_bytes: int, total_bytes: int) -> None:
|
||||
"""
|
||||
Emit "download_progress" events at regular intervals during a download job.
|
||||
|
||||
:param source: The downloaded source
|
||||
:param download_path: The local downloaded file
|
||||
:param current_bytes: Number of bytes downloaded so far
|
||||
:param total_bytes: The size of the file being downloaded (if known)
|
||||
"""
|
||||
self.__emit_download_event(
|
||||
event_name="download_progress",
|
||||
payload={
|
||||
"source": source,
|
||||
"download_path": download_path,
|
||||
"current_bytes": current_bytes,
|
||||
"total_bytes": total_bytes,
|
||||
},
|
||||
)
|
||||
|
||||
def emit_download_complete(self, source: str, download_path: str, total_bytes: int) -> None:
|
||||
"""
|
||||
Emit a "download_complete" event at the end of a successful download.
|
||||
|
||||
:param source: Source URL
|
||||
:param download_path: Path to the locally downloaded file
|
||||
:param total_bytes: The size of the downloaded file
|
||||
"""
|
||||
self.__emit_download_event(
|
||||
event_name="download_complete",
|
||||
payload={
|
||||
"source": source,
|
||||
"download_path": download_path,
|
||||
"total_bytes": total_bytes,
|
||||
},
|
||||
)
|
||||
|
||||
def emit_download_cancelled(self, source: str) -> None:
|
||||
"""Emit a "download_cancelled" event in the event that the download was cancelled by user."""
|
||||
self.__emit_download_event(
|
||||
event_name="download_cancelled",
|
||||
payload={
|
||||
"source": source,
|
||||
},
|
||||
)
|
||||
|
||||
def emit_download_error(self, source: str, error_type: str, error: str) -> None:
|
||||
"""
|
||||
Emit a "download_error" event when an download job encounters an exception.
|
||||
|
||||
:param source: Source URL
|
||||
:param error_type: The name of the exception that raised the error
|
||||
:param error: The traceback from this error
|
||||
"""
|
||||
self.__emit_download_event(
|
||||
event_name="download_error",
|
||||
payload={
|
||||
"source": source,
|
||||
"error_type": error_type,
|
||||
"error": error,
|
||||
},
|
||||
)
|
||||
|
||||
def emit_model_install_started(self, source: str) -> None:
|
||||
"""
|
||||
Emitted when an install job is started.
|
||||
|
@ -11,6 +11,7 @@ if TYPE_CHECKING:
|
||||
from .board_records.board_records_base import BoardRecordStorageBase
|
||||
from .boards.boards_base import BoardServiceABC
|
||||
from .config import InvokeAIAppConfig
|
||||
from .download import DownloadQueueServiceBase
|
||||
from .events.events_base import EventServiceBase
|
||||
from .image_files.image_files_base import ImageFileStorageBase
|
||||
from .image_records.image_records_base import ImageRecordStorageBase
|
||||
@ -27,7 +28,7 @@ if TYPE_CHECKING:
|
||||
from .names.names_base import NameServiceBase
|
||||
from .session_processor.session_processor_base import SessionProcessorBase
|
||||
from .session_queue.session_queue_base import SessionQueueBase
|
||||
from .shared.graph import GraphExecutionState, LibraryGraph
|
||||
from .shared.graph import GraphExecutionState
|
||||
from .urls.urls_base import UrlServiceBase
|
||||
from .workflow_records.workflow_records_base import WorkflowRecordsStorageBase
|
||||
|
||||
@ -43,7 +44,6 @@ class InvocationServices:
|
||||
configuration: "InvokeAIAppConfig"
|
||||
events: "EventServiceBase"
|
||||
graph_execution_manager: "ItemStorageABC[GraphExecutionState]"
|
||||
graph_library: "ItemStorageABC[LibraryGraph]"
|
||||
images: "ImageServiceABC"
|
||||
image_records: "ImageRecordStorageBase"
|
||||
image_files: "ImageFileStorageBase"
|
||||
@ -51,6 +51,7 @@ class InvocationServices:
|
||||
logger: "Logger"
|
||||
model_manager: "ModelManagerServiceBase"
|
||||
model_records: "ModelRecordServiceBase"
|
||||
download_queue: "DownloadQueueServiceBase"
|
||||
model_install: "ModelInstallServiceBase"
|
||||
processor: "InvocationProcessorABC"
|
||||
performance_statistics: "InvocationStatsServiceBase"
|
||||
@ -71,7 +72,6 @@ class InvocationServices:
|
||||
configuration: "InvokeAIAppConfig",
|
||||
events: "EventServiceBase",
|
||||
graph_execution_manager: "ItemStorageABC[GraphExecutionState]",
|
||||
graph_library: "ItemStorageABC[LibraryGraph]",
|
||||
images: "ImageServiceABC",
|
||||
image_files: "ImageFileStorageBase",
|
||||
image_records: "ImageRecordStorageBase",
|
||||
@ -79,6 +79,7 @@ class InvocationServices:
|
||||
logger: "Logger",
|
||||
model_manager: "ModelManagerServiceBase",
|
||||
model_records: "ModelRecordServiceBase",
|
||||
download_queue: "DownloadQueueServiceBase",
|
||||
model_install: "ModelInstallServiceBase",
|
||||
processor: "InvocationProcessorABC",
|
||||
performance_statistics: "InvocationStatsServiceBase",
|
||||
@ -97,7 +98,6 @@ class InvocationServices:
|
||||
self.configuration = configuration
|
||||
self.events = events
|
||||
self.graph_execution_manager = graph_execution_manager
|
||||
self.graph_library = graph_library
|
||||
self.images = images
|
||||
self.image_files = image_files
|
||||
self.image_records = image_records
|
||||
@ -105,6 +105,7 @@ class InvocationServices:
|
||||
self.logger = logger
|
||||
self.model_manager = model_manager
|
||||
self.model_records = model_records
|
||||
self.download_queue = download_queue
|
||||
self.model_install = model_install
|
||||
self.processor = processor
|
||||
self.performance_statistics = performance_statistics
|
||||
|
@ -11,7 +11,6 @@ from typing_extensions import Annotated
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.events import EventServiceBase
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.model_records import ModelRecordServiceBase
|
||||
from invokeai.backend.model_manager import AnyModelConfig
|
||||
|
||||
@ -157,12 +156,12 @@ class ModelInstallServiceBase(ABC):
|
||||
:param event_bus: InvokeAI event bus for reporting events to.
|
||||
"""
|
||||
|
||||
def start(self, invoker: Invoker) -> None:
|
||||
"""Call at InvokeAI startup time."""
|
||||
self.sync_to_config()
|
||||
@abstractmethod
|
||||
def start(self, *args: Any, **kwarg: Any) -> None:
|
||||
"""Start the installer service."""
|
||||
|
||||
@abstractmethod
|
||||
def stop(self) -> None:
|
||||
def stop(self, *args: Any, **kwarg: Any) -> None:
|
||||
"""Stop the model install service. After this the objection can be safely deleted."""
|
||||
|
||||
@property
|
||||
|
@ -71,7 +71,6 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
self._install_queue = Queue()
|
||||
self._cached_model_paths = set()
|
||||
self._models_installed = set()
|
||||
self._start_installer_thread()
|
||||
|
||||
@property
|
||||
def app_config(self) -> InvokeAIAppConfig: # noqa D102
|
||||
@ -85,8 +84,13 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def event_bus(self) -> Optional[EventServiceBase]: # noqa D102
|
||||
return self._event_bus
|
||||
|
||||
def stop(self, *args, **kwargs) -> None:
|
||||
"""Stop the install thread; after this the object can be deleted and garbage collected."""
|
||||
def start(self, *args: Any, **kwarg: Any) -> None:
|
||||
"""Start the installer thread."""
|
||||
self._start_installer_thread()
|
||||
self.sync_to_config()
|
||||
|
||||
def stop(self, *args: Any, **kwarg: Any) -> None:
|
||||
"""Stop the installer thread; after this the object can be deleted and garbage collected."""
|
||||
self._install_queue.put(STOP_JOB)
|
||||
|
||||
def _start_installer_thread(self) -> None:
|
||||
|
@ -5,6 +5,7 @@ from invokeai.app.services.image_files.image_files_base import ImageFileStorageB
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_1 import build_migration_1
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_2 import build_migration_2
|
||||
from invokeai.app.services.shared.sqlite_migrator.migrations.migration_3 import build_migration_3
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_impl import SqliteMigrator
|
||||
|
||||
|
||||
@ -27,6 +28,7 @@ def init_db(config: InvokeAIAppConfig, logger: Logger, image_files: ImageFileSto
|
||||
migrator = SqliteMigrator(db=db)
|
||||
migrator.register_migration(build_migration_1())
|
||||
migrator.register_migration(build_migration_2(image_files=image_files, logger=logger))
|
||||
migrator.register_migration(build_migration_3())
|
||||
migrator.run_migrations()
|
||||
|
||||
return db
|
||||
|
@ -11,6 +11,8 @@ from invokeai.app.services.workflow_records.workflow_records_common import (
|
||||
UnsafeWorkflowWithVersionValidator,
|
||||
)
|
||||
|
||||
from .util.migrate_yaml_config_1 import MigrateModelYamlToDb1
|
||||
|
||||
|
||||
class Migration2Callback:
|
||||
def __init__(self, image_files: ImageFileStorageBase, logger: Logger):
|
||||
@ -24,6 +26,7 @@ class Migration2Callback:
|
||||
self._add_workflow_library(cursor)
|
||||
self._drop_model_manager_metadata(cursor)
|
||||
self._recreate_model_config(cursor)
|
||||
self._migrate_model_config_records(cursor)
|
||||
self._migrate_embedded_workflows(cursor)
|
||||
|
||||
def _add_images_has_workflow(self, cursor: sqlite3.Cursor) -> None:
|
||||
@ -131,6 +134,11 @@ class Migration2Callback:
|
||||
"""
|
||||
)
|
||||
|
||||
def _migrate_model_config_records(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""After updating the model config table, we repopulate it."""
|
||||
model_record_migrator = MigrateModelYamlToDb1(cursor)
|
||||
model_record_migrator.migrate()
|
||||
|
||||
def _migrate_embedded_workflows(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""
|
||||
In the v3.5.0 release, InvokeAI changed how it handles embedded workflows. The `images` table in
|
||||
@ -159,6 +167,9 @@ class Migration2Callback:
|
||||
except ImageFileNotFoundException:
|
||||
self._logger.warning(f"Image {image_name} not found, skipping")
|
||||
continue
|
||||
except Exception as e:
|
||||
self._logger.warning(f"Error while checking image {image_name}, skipping: {e}")
|
||||
continue
|
||||
if "invokeai_workflow" in pil_image.info:
|
||||
try:
|
||||
UnsafeWorkflowWithVersionValidator.validate_json(pil_image.info.get("invokeai_workflow", ""))
|
||||
|
@ -0,0 +1,75 @@
|
||||
import sqlite3
|
||||
|
||||
from invokeai.app.services.shared.sqlite_migrator.sqlite_migrator_common import Migration
|
||||
|
||||
from .util.migrate_yaml_config_1 import MigrateModelYamlToDb1
|
||||
|
||||
|
||||
class Migration3Callback:
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def __call__(self, cursor: sqlite3.Cursor) -> None:
|
||||
self._drop_model_manager_metadata(cursor)
|
||||
self._recreate_model_config(cursor)
|
||||
self._migrate_model_config_records(cursor)
|
||||
|
||||
def _drop_model_manager_metadata(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""Drops the `model_manager_metadata` table."""
|
||||
cursor.execute("DROP TABLE IF EXISTS model_manager_metadata;")
|
||||
|
||||
def _recreate_model_config(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""
|
||||
Drops the `model_config` table, recreating it.
|
||||
|
||||
In 3.4.0, this table used explicit columns but was changed to use json_extract 3.5.0.
|
||||
|
||||
Because this table is not used in production, we are able to simply drop it and recreate it.
|
||||
"""
|
||||
|
||||
cursor.execute("DROP TABLE IF EXISTS model_config;")
|
||||
|
||||
cursor.execute(
|
||||
"""--sql
|
||||
CREATE TABLE IF NOT EXISTS model_config (
|
||||
id TEXT NOT NULL PRIMARY KEY,
|
||||
-- The next 3 fields are enums in python, unrestricted string here
|
||||
base TEXT GENERATED ALWAYS as (json_extract(config, '$.base')) VIRTUAL NOT NULL,
|
||||
type TEXT GENERATED ALWAYS as (json_extract(config, '$.type')) VIRTUAL NOT NULL,
|
||||
name TEXT GENERATED ALWAYS as (json_extract(config, '$.name')) VIRTUAL NOT NULL,
|
||||
path TEXT GENERATED ALWAYS as (json_extract(config, '$.path')) VIRTUAL NOT NULL,
|
||||
format TEXT GENERATED ALWAYS as (json_extract(config, '$.format')) VIRTUAL NOT NULL,
|
||||
original_hash TEXT, -- could be null
|
||||
-- Serialized JSON representation of the whole config object,
|
||||
-- which will contain additional fields from subclasses
|
||||
config TEXT NOT NULL,
|
||||
created_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
-- Updated via trigger
|
||||
updated_at DATETIME NOT NULL DEFAULT(STRFTIME('%Y-%m-%d %H:%M:%f', 'NOW')),
|
||||
-- unique constraint on combo of name, base and type
|
||||
UNIQUE(name, base, type)
|
||||
);
|
||||
"""
|
||||
)
|
||||
|
||||
def _migrate_model_config_records(self, cursor: sqlite3.Cursor) -> None:
|
||||
"""After updating the model config table, we repopulate it."""
|
||||
model_record_migrator = MigrateModelYamlToDb1(cursor)
|
||||
model_record_migrator.migrate()
|
||||
|
||||
|
||||
def build_migration_3() -> Migration:
|
||||
"""
|
||||
Build the migration from database version 2 to 3.
|
||||
|
||||
This migration does the following:
|
||||
- Drops the `model_config` table, recreating it
|
||||
- Migrates data from `models.yaml` into the `model_config` table
|
||||
"""
|
||||
migration_3 = Migration(
|
||||
from_version=2,
|
||||
to_version=3,
|
||||
callback=Migration3Callback(),
|
||||
)
|
||||
|
||||
return migration_3
|
@ -1,8 +1,12 @@
|
||||
# Copyright (c) 2023 Lincoln D. Stein
|
||||
"""Migrate from the InvokeAI v2 models.yaml format to the v3 sqlite format."""
|
||||
|
||||
import json
|
||||
import sqlite3
|
||||
from hashlib import sha1
|
||||
from logging import Logger
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from pydantic import TypeAdapter
|
||||
@ -10,13 +14,12 @@ from pydantic import TypeAdapter
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.model_records import (
|
||||
DuplicateModelException,
|
||||
ModelRecordServiceSQL,
|
||||
UnknownModelException,
|
||||
)
|
||||
from invokeai.app.services.shared.sqlite.sqlite_database import SqliteDatabase
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelConfigFactory,
|
||||
ModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.hash import FastModelHash
|
||||
@ -25,9 +28,9 @@ from invokeai.backend.util.logging import InvokeAILogger
|
||||
ModelsValidator = TypeAdapter(AnyModelConfig)
|
||||
|
||||
|
||||
class MigrateModelYamlToDb:
|
||||
class MigrateModelYamlToDb1:
|
||||
"""
|
||||
Migrate the InvokeAI models.yaml format (VERSION 3.0.0) to SQL3 database format (VERSION 3.2.0)
|
||||
Migrate the InvokeAI models.yaml format (VERSION 3.0.0) to SQL3 database format (VERSION 3.5.0).
|
||||
|
||||
The class has one externally useful method, migrate(), which scans the
|
||||
currently models.yaml file and imports all its entries into invokeai.db.
|
||||
@ -41,17 +44,13 @@ class MigrateModelYamlToDb:
|
||||
|
||||
config: InvokeAIAppConfig
|
||||
logger: Logger
|
||||
cursor: sqlite3.Cursor
|
||||
|
||||
def __init__(self) -> None:
|
||||
def __init__(self, cursor: sqlite3.Cursor = None) -> None:
|
||||
self.config = InvokeAIAppConfig.get_config()
|
||||
self.config.parse_args()
|
||||
self.logger = InvokeAILogger.get_logger()
|
||||
|
||||
def get_db(self) -> ModelRecordServiceSQL:
|
||||
"""Fetch the sqlite3 database for this installation."""
|
||||
db_path = None if self.config.use_memory_db else self.config.db_path
|
||||
db = SqliteDatabase(db_path=db_path, logger=self.logger, verbose=self.config.log_sql)
|
||||
return ModelRecordServiceSQL(db)
|
||||
self.cursor = cursor
|
||||
|
||||
def get_yaml(self) -> DictConfig:
|
||||
"""Fetch the models.yaml DictConfig for this installation."""
|
||||
@ -62,8 +61,10 @@ class MigrateModelYamlToDb:
|
||||
|
||||
def migrate(self) -> None:
|
||||
"""Do the migration from models.yaml to invokeai.db."""
|
||||
db = self.get_db()
|
||||
try:
|
||||
yaml = self.get_yaml()
|
||||
except OSError:
|
||||
return
|
||||
|
||||
for model_key, stanza in yaml.items():
|
||||
if model_key == "__metadata__":
|
||||
@ -86,22 +87,62 @@ class MigrateModelYamlToDb:
|
||||
new_config: AnyModelConfig = ModelsValidator.validate_python(stanza) # type: ignore # see https://github.com/pydantic/pydantic/discussions/7094
|
||||
|
||||
try:
|
||||
if original_record := db.search_by_path(stanza.path):
|
||||
key = original_record[0].key
|
||||
if original_record := self._search_by_path(stanza.path):
|
||||
key = original_record.key
|
||||
self.logger.info(f"Updating model {model_name} with information from models.yaml using key {key}")
|
||||
db.update_model(key, new_config)
|
||||
self._update_model(key, new_config)
|
||||
else:
|
||||
self.logger.info(f"Adding model {model_name} with key {model_key}")
|
||||
db.add_model(new_key, new_config)
|
||||
self._add_model(new_key, new_config)
|
||||
except DuplicateModelException:
|
||||
self.logger.warning(f"Model {model_name} is already in the database")
|
||||
except UnknownModelException:
|
||||
self.logger.warning(f"Model at {stanza.path} could not be found in database")
|
||||
|
||||
def _search_by_path(self, path: Path) -> Optional[AnyModelConfig]:
|
||||
self.cursor.execute(
|
||||
"""--sql
|
||||
SELECT config FROM model_config
|
||||
WHERE path=?;
|
||||
""",
|
||||
(str(path),),
|
||||
)
|
||||
results = [ModelConfigFactory.make_config(json.loads(x[0])) for x in self.cursor.fetchall()]
|
||||
return results[0] if results else None
|
||||
|
||||
def main():
|
||||
MigrateModelYamlToDb().migrate()
|
||||
def _update_model(self, key: str, config: AnyModelConfig) -> None:
|
||||
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect
|
||||
json_serialized = record.model_dump_json() # and turn it into a json string.
|
||||
self.cursor.execute(
|
||||
"""--sql
|
||||
UPDATE model_config
|
||||
SET
|
||||
config=?
|
||||
WHERE id=?;
|
||||
""",
|
||||
(json_serialized, key),
|
||||
)
|
||||
if self.cursor.rowcount == 0:
|
||||
raise UnknownModelException("model not found")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
def _add_model(self, key: str, config: AnyModelConfig) -> None:
|
||||
record = ModelConfigFactory.make_config(config, key=key) # ensure it is a valid config obect.
|
||||
json_serialized = record.model_dump_json() # and turn it into a json string.
|
||||
try:
|
||||
self.cursor.execute(
|
||||
"""--sql
|
||||
INSERT INTO model_config (
|
||||
id,
|
||||
original_hash,
|
||||
config
|
||||
)
|
||||
VALUES (?,?,?);
|
||||
""",
|
||||
(
|
||||
key,
|
||||
record.original_hash,
|
||||
json_serialized,
|
||||
),
|
||||
)
|
||||
except sqlite3.IntegrityError as exc:
|
||||
raise DuplicateModelException(f"{record.name}: model is already in database") from exc
|
@ -0,0 +1,975 @@
|
||||
{
|
||||
"name": "Prompt from File",
|
||||
"author": "InvokeAI",
|
||||
"description": "Sample workflow using Prompt from File node",
|
||||
"version": "0.1.0",
|
||||
"contact": "invoke@invoke.ai",
|
||||
"tags": "text2image, prompt from file, default",
|
||||
"notes": "",
|
||||
"exposedFields": [
|
||||
{
|
||||
"nodeId": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
|
||||
"fieldName": "model"
|
||||
},
|
||||
{
|
||||
"nodeId": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
|
||||
"fieldName": "file_path"
|
||||
}
|
||||
],
|
||||
"meta": {
|
||||
"category": "default",
|
||||
"version": "2.0.0"
|
||||
},
|
||||
"id": "d1609af5-eb0a-4f73-b573-c9af96a8d6bf",
|
||||
"nodes": [
|
||||
{
|
||||
"id": "c2eaf1ba-5708-4679-9e15-945b8b432692",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "c2eaf1ba-5708-4679-9e15-945b8b432692",
|
||||
"type": "compel",
|
||||
"label": "",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"prompt": {
|
||||
"id": "dcdf3f6d-9b96-4bcd-9b8d-f992fefe4f62",
|
||||
"name": "prompt",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": ""
|
||||
},
|
||||
"clip": {
|
||||
"id": "3f1981c9-d8a9-42eb-a739-4f120eb80745",
|
||||
"name": "clip",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"conditioning": {
|
||||
"id": "46205e6c-c5e2-44cb-9c82-1cd20b95674a",
|
||||
"name": "conditioning",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 925,
|
||||
"y": -200
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
|
||||
"type": "prompt_from_file",
|
||||
"label": "Prompts from File",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.1",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"file_path": {
|
||||
"id": "37e37684-4f30-4ec8-beae-b333e550f904",
|
||||
"name": "file_path",
|
||||
"fieldKind": "input",
|
||||
"label": "Prompts File Path",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": ""
|
||||
},
|
||||
"pre_prompt": {
|
||||
"id": "7de02feb-819a-4992-bad3-72a30920ddea",
|
||||
"name": "pre_prompt",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": ""
|
||||
},
|
||||
"post_prompt": {
|
||||
"id": "95f191d8-a282-428e-bd65-de8cb9b7513a",
|
||||
"name": "post_prompt",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": ""
|
||||
},
|
||||
"start_line": {
|
||||
"id": "efee9a48-05ab-4829-8429-becfa64a0782",
|
||||
"name": "start_line",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 1
|
||||
},
|
||||
"max_prompts": {
|
||||
"id": "abebb428-3d3d-49fd-a482-4e96a16fff08",
|
||||
"name": "max_prompts",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 1
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"collection": {
|
||||
"id": "77d5d7f1-9877-4ab1-9a8c-33e9ffa9abf3",
|
||||
"name": "collection",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": true,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 580,
|
||||
"position": {
|
||||
"x": 475,
|
||||
"y": -400
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "1b89067c-3f6b-42c8-991f-e3055789b251",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "1b89067c-3f6b-42c8-991f-e3055789b251",
|
||||
"type": "iterate",
|
||||
"label": "",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.1.0",
|
||||
"inputs": {
|
||||
"collection": {
|
||||
"id": "4c564bf8-5ed6-441e-ad2c-dda265d5785f",
|
||||
"name": "collection",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": true,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "CollectionField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"item": {
|
||||
"id": "36340f9a-e7a5-4afa-b4b5-313f4e292380",
|
||||
"name": "item",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "CollectionItemField"
|
||||
}
|
||||
},
|
||||
"index": {
|
||||
"id": "1beca95a-2159-460f-97ff-c8bab7d89336",
|
||||
"name": "index",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"total": {
|
||||
"id": "ead597b8-108e-4eda-88a8-5c29fa2f8df9",
|
||||
"name": "total",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 925,
|
||||
"y": -400
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
|
||||
"type": "main_model_loader",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"model": {
|
||||
"id": "3f264259-3418-47d5-b90d-b6600e36ae46",
|
||||
"name": "model",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "MainModelField"
|
||||
},
|
||||
"value": {
|
||||
"model_name": "stable-diffusion-v1-5",
|
||||
"base_model": "sd-1",
|
||||
"model_type": "main"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"unet": {
|
||||
"id": "8e182ea2-9d0a-4c02-9407-27819288d4b5",
|
||||
"name": "unet",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"id": "d67d9d30-058c-46d5-bded-3d09d6d1aa39",
|
||||
"name": "clip",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"id": "89641601-0429-4448-98d5-190822d920d8",
|
||||
"name": "vae",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "VaeField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 227,
|
||||
"position": {
|
||||
"x": 0,
|
||||
"y": -375
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
|
||||
"type": "compel",
|
||||
"label": "",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"prompt": {
|
||||
"id": "dcdf3f6d-9b96-4bcd-9b8d-f992fefe4f62",
|
||||
"name": "prompt",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": ""
|
||||
},
|
||||
"clip": {
|
||||
"id": "3f1981c9-d8a9-42eb-a739-4f120eb80745",
|
||||
"name": "clip",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"conditioning": {
|
||||
"id": "46205e6c-c5e2-44cb-9c82-1cd20b95674a",
|
||||
"name": "conditioning",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 925,
|
||||
"y": -275
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
|
||||
"type": "noise",
|
||||
"label": "",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.1",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"seed": {
|
||||
"id": "b722d84a-eeee-484f-bef2-0250c027cb67",
|
||||
"name": "seed",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"width": {
|
||||
"id": "d5f8ce11-0502-4bfc-9a30-5757dddf1f94",
|
||||
"name": "width",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 512
|
||||
},
|
||||
"height": {
|
||||
"id": "f187d5ff-38a5-4c3f-b780-fc5801ef34af",
|
||||
"name": "height",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 512
|
||||
},
|
||||
"use_cpu": {
|
||||
"id": "12f112b8-8b76-4816-b79e-662edc9f9aa5",
|
||||
"name": "use_cpu",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": true
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"noise": {
|
||||
"id": "08576ad1-96d9-42d2-96ef-6f5c1961933f",
|
||||
"name": "noise",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "f3e1f94a-258d-41ff-9789-bd999bd9f40d",
|
||||
"name": "width",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "6cefc357-4339-415e-a951-49b9c2be32f4",
|
||||
"name": "height",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 925,
|
||||
"y": 25
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
|
||||
"type": "rand_int",
|
||||
"label": "",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"version": "1.0.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"low": {
|
||||
"id": "b9fc6cf1-469c-4037-9bf0-04836965826f",
|
||||
"name": "low",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"high": {
|
||||
"id": "06eac725-0f60-4ba2-b8cd-7ad9f757488c",
|
||||
"name": "high",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 2147483647
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"value": {
|
||||
"id": "df08c84e-7346-4e92-9042-9e5cb773aaff",
|
||||
"name": "value",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 925,
|
||||
"y": -50
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
|
||||
"type": "l2i",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.2.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"metadata": {
|
||||
"id": "022e4b33-562b-438d-b7df-41c3fd931f40",
|
||||
"name": "metadata",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "MetadataField"
|
||||
}
|
||||
},
|
||||
"latents": {
|
||||
"id": "67cb6c77-a394-4a66-a6a9-a0a7dcca69ec",
|
||||
"name": "latents",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"id": "7b3fd9ad-a4ef-4e04-89fa-3832a9902dbd",
|
||||
"name": "vae",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "VaeField"
|
||||
}
|
||||
},
|
||||
"tiled": {
|
||||
"id": "5ac5680d-3add-4115-8ec0-9ef5bb87493b",
|
||||
"name": "tiled",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": false
|
||||
},
|
||||
"fp32": {
|
||||
"id": "db8297f5-55f8-452f-98cf-6572c2582152",
|
||||
"name": "fp32",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": false
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"image": {
|
||||
"id": "d8778d0c-592a-4960-9280-4e77e00a7f33",
|
||||
"name": "image",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ImageField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "c8b0a75a-f5de-4ff2-9227-f25bb2b97bec",
|
||||
"name": "width",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "83c05fbf-76b9-49ab-93c4-fa4b10e793e4",
|
||||
"name": "height",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 267,
|
||||
"position": {
|
||||
"x": 2037.861329274915,
|
||||
"y": -329.8393457509562
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
|
||||
"type": "denoise_latents",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.5.0",
|
||||
"nodePack": "invokeai",
|
||||
"inputs": {
|
||||
"positive_conditioning": {
|
||||
"id": "751fb35b-3f23-45ce-af1c-053e74251337",
|
||||
"name": "positive_conditioning",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
},
|
||||
"negative_conditioning": {
|
||||
"id": "b9dc06b6-7481-4db1-a8c2-39d22a5eacff",
|
||||
"name": "negative_conditioning",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
},
|
||||
"noise": {
|
||||
"id": "6e15e439-3390-48a4-8031-01e0e19f0e1d",
|
||||
"name": "noise",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"steps": {
|
||||
"id": "bfdfb3df-760b-4d51-b17b-0abb38b976c2",
|
||||
"name": "steps",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 10
|
||||
},
|
||||
"cfg_scale": {
|
||||
"id": "47770858-322e-41af-8494-d8b63ed735f3",
|
||||
"name": "cfg_scale",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 7.5
|
||||
},
|
||||
"denoising_start": {
|
||||
"id": "2ba78720-ee02-4130-a348-7bc3531f790b",
|
||||
"name": "denoising_start",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"denoising_end": {
|
||||
"id": "a874dffb-d433-4d1a-9f59-af4367bb05e4",
|
||||
"name": "denoising_end",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 1
|
||||
},
|
||||
"scheduler": {
|
||||
"id": "36e021ad-b762-4fe4-ad4d-17f0291c40b2",
|
||||
"name": "scheduler",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "SchedulerField"
|
||||
},
|
||||
"value": "euler"
|
||||
},
|
||||
"unet": {
|
||||
"id": "98d3282d-f9f6-4b5e-b9e8-58658f1cac78",
|
||||
"name": "unet",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
},
|
||||
"control": {
|
||||
"id": "f2ea3216-43d5-42b4-887f-36e8f7166d53",
|
||||
"name": "control",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "ControlField"
|
||||
}
|
||||
},
|
||||
"ip_adapter": {
|
||||
"id": "d0780610-a298-47c8-a54e-70e769e0dfe2",
|
||||
"name": "ip_adapter",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "IPAdapterField"
|
||||
}
|
||||
},
|
||||
"t2i_adapter": {
|
||||
"id": "fdb40970-185e-4ea8-8bb5-88f06f91f46a",
|
||||
"name": "t2i_adapter",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "T2IAdapterField"
|
||||
}
|
||||
},
|
||||
"cfg_rescale_multiplier": {
|
||||
"id": "3af2d8c5-de83-425c-a100-49cb0f1f4385",
|
||||
"name": "cfg_rescale_multiplier",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"latents": {
|
||||
"id": "e05b538a-1b5a-4aa5-84b1-fd2361289a81",
|
||||
"name": "latents",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"denoise_mask": {
|
||||
"id": "463a419e-df30-4382-8ffb-b25b25abe425",
|
||||
"name": "denoise_mask",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "DenoiseMaskField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"latents": {
|
||||
"id": "559ee688-66cf-4139-8b82-3d3aa69995ce",
|
||||
"name": "latents",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "0b4285c2-e8b9-48e5-98f6-0a49d3f98fd2",
|
||||
"name": "width",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "8b0881b9-45e5-47d5-b526-24b6661de0ee",
|
||||
"name": "height",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 705,
|
||||
"position": {
|
||||
"x": 1570.9941088179146,
|
||||
"y": -407.6505491604564
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"id": "1b89067c-3f6b-42c8-991f-e3055789b251-fc9d0e35-a6de-4a19-84e1-c72497c823f6-collapsed",
|
||||
"source": "1b89067c-3f6b-42c8-991f-e3055789b251",
|
||||
"target": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
|
||||
"type": "collapsed"
|
||||
},
|
||||
{
|
||||
"id": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5-0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77-collapsed",
|
||||
"source": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
|
||||
"target": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
|
||||
"type": "collapsed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-1b7e0df8-8589-4915-a4ea-c0088f15d642collection-1b89067c-3f6b-42c8-991f-e3055789b251collection",
|
||||
"source": "1b7e0df8-8589-4915-a4ea-c0088f15d642",
|
||||
"target": "1b89067c-3f6b-42c8-991f-e3055789b251",
|
||||
"type": "default",
|
||||
"sourceHandle": "collection",
|
||||
"targetHandle": "collection"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426clip-fc9d0e35-a6de-4a19-84e1-c72497c823f6clip",
|
||||
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
|
||||
"target": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
|
||||
"type": "default",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-1b89067c-3f6b-42c8-991f-e3055789b251item-fc9d0e35-a6de-4a19-84e1-c72497c823f6prompt",
|
||||
"source": "1b89067c-3f6b-42c8-991f-e3055789b251",
|
||||
"target": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
|
||||
"type": "default",
|
||||
"sourceHandle": "item",
|
||||
"targetHandle": "prompt"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426clip-c2eaf1ba-5708-4679-9e15-945b8b432692clip",
|
||||
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
|
||||
"target": "c2eaf1ba-5708-4679-9e15-945b8b432692",
|
||||
"type": "default",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5value-0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77seed",
|
||||
"source": "dfc20e07-7aef-4fc0-a3a1-7bf68ec6a4e5",
|
||||
"target": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
|
||||
"type": "default",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-fc9d0e35-a6de-4a19-84e1-c72497c823f6conditioning-2fb1577f-0a56-4f12-8711-8afcaaaf1d5epositive_conditioning",
|
||||
"source": "fc9d0e35-a6de-4a19-84e1-c72497c823f6",
|
||||
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
|
||||
"type": "default",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "positive_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c2eaf1ba-5708-4679-9e15-945b8b432692conditioning-2fb1577f-0a56-4f12-8711-8afcaaaf1d5enegative_conditioning",
|
||||
"source": "c2eaf1ba-5708-4679-9e15-945b8b432692",
|
||||
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
|
||||
"type": "default",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "negative_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77noise-2fb1577f-0a56-4f12-8711-8afcaaaf1d5enoise",
|
||||
"source": "0eb5f3f5-1b91-49eb-9ef0-41d67c7eae77",
|
||||
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
|
||||
"type": "default",
|
||||
"sourceHandle": "noise",
|
||||
"targetHandle": "noise"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426unet-2fb1577f-0a56-4f12-8711-8afcaaaf1d5eunet",
|
||||
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
|
||||
"target": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
|
||||
"type": "default",
|
||||
"sourceHandle": "unet",
|
||||
"targetHandle": "unet"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-2fb1577f-0a56-4f12-8711-8afcaaaf1d5elatents-491ec988-3c77-4c37-af8a-39a0c4e7a2a1latents",
|
||||
"source": "2fb1577f-0a56-4f12-8711-8afcaaaf1d5e",
|
||||
"target": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
|
||||
"type": "default",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-d6353b7f-b447-4e17-8f2e-80a88c91d426vae-491ec988-3c77-4c37-af8a-39a0c4e7a2a1vae",
|
||||
"source": "d6353b7f-b447-4e17-8f2e-80a88c91d426",
|
||||
"target": "491ec988-3c77-4c37-af8a-39a0c4e7a2a1",
|
||||
"type": "default",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
}
|
||||
]
|
||||
}
|
@ -0,0 +1,903 @@
|
||||
{
|
||||
"name": "Text to Image with LoRA",
|
||||
"author": "InvokeAI",
|
||||
"description": "Simple text to image workflow with a LoRA",
|
||||
"version": "1.0.0",
|
||||
"contact": "invoke@invoke.ai",
|
||||
"tags": "text to image, lora, default",
|
||||
"notes": "",
|
||||
"exposedFields": [
|
||||
{
|
||||
"nodeId": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
|
||||
"fieldName": "model"
|
||||
},
|
||||
{
|
||||
"nodeId": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"fieldName": "lora"
|
||||
},
|
||||
{
|
||||
"nodeId": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"fieldName": "weight"
|
||||
},
|
||||
{
|
||||
"nodeId": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
|
||||
"fieldName": "prompt"
|
||||
}
|
||||
],
|
||||
"meta": {
|
||||
"version": "2.0.0",
|
||||
"category": "default"
|
||||
},
|
||||
"id": "a9d70c39-4cdd-4176-9942-8ff3fe32d3b1",
|
||||
"nodes": [
|
||||
{
|
||||
"id": "85b77bb2-c67a-416a-b3e8-291abe746c44",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "85b77bb2-c67a-416a-b3e8-291abe746c44",
|
||||
"type": "compel",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"inputs": {
|
||||
"prompt": {
|
||||
"id": "39fe92c4-38eb-4cc7-bf5e-cbcd31847b11",
|
||||
"name": "prompt",
|
||||
"fieldKind": "input",
|
||||
"label": "Negative Prompt",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": ""
|
||||
},
|
||||
"clip": {
|
||||
"id": "14313164-e5c4-4e40-a599-41b614fe3690",
|
||||
"name": "clip",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"conditioning": {
|
||||
"id": "02140b9d-50f3-470b-a0b7-01fc6ed2dcd6",
|
||||
"name": "conditioning",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 256,
|
||||
"position": {
|
||||
"x": 3425,
|
||||
"y": -300
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
|
||||
"type": "main_model_loader",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"inputs": {
|
||||
"model": {
|
||||
"id": "e2e1c177-ae39-4244-920e-d621fa156a24",
|
||||
"name": "model",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "MainModelField"
|
||||
},
|
||||
"value": {
|
||||
"model_name": "Analog-Diffusion",
|
||||
"base_model": "sd-1",
|
||||
"model_type": "main"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"vae": {
|
||||
"id": "f91410e8-9378-4298-b285-f0f40ffd9825",
|
||||
"name": "vae",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "VaeField"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"id": "928d91bf-de0c-44a8-b0c8-4de0e2e5b438",
|
||||
"name": "clip",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
},
|
||||
"unet": {
|
||||
"id": "eacaf530-4e7e-472e-b904-462192189fc1",
|
||||
"name": "unet",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 227,
|
||||
"position": {
|
||||
"x": 2500,
|
||||
"y": -600
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"type": "lora_loader",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"inputs": {
|
||||
"lora": {
|
||||
"id": "36d867e8-92ea-4c3f-9ad5-ba05c64cf326",
|
||||
"name": "lora",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LoRAModelField"
|
||||
},
|
||||
"value": {
|
||||
"model_name": "Ink scenery",
|
||||
"base_model": "sd-1"
|
||||
}
|
||||
},
|
||||
"weight": {
|
||||
"id": "8be86540-ba81-49b3-b394-2b18fa70b867",
|
||||
"name": "weight",
|
||||
"fieldKind": "input",
|
||||
"label": "LoRA Weight",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 0.75
|
||||
},
|
||||
"unet": {
|
||||
"id": "9c4d5668-e9e1-411b-8f4b-e71115bc4a01",
|
||||
"name": "unet",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"id": "918ec00e-e76f-4ad0-aee1-3927298cf03b",
|
||||
"name": "clip",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"unet": {
|
||||
"id": "c63f7825-1bcf-451d-b7a7-aa79f5c77416",
|
||||
"name": "unet",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"id": "6f79ef2d-00f7-4917-bee3-53e845bf4192",
|
||||
"name": "clip",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 252,
|
||||
"position": {
|
||||
"x": 2975,
|
||||
"y": -600
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
|
||||
"type": "compel",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.0",
|
||||
"inputs": {
|
||||
"prompt": {
|
||||
"id": "39fe92c4-38eb-4cc7-bf5e-cbcd31847b11",
|
||||
"name": "prompt",
|
||||
"fieldKind": "input",
|
||||
"label": "Positive Prompt",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "StringField"
|
||||
},
|
||||
"value": "cute tiger cub"
|
||||
},
|
||||
"clip": {
|
||||
"id": "14313164-e5c4-4e40-a599-41b614fe3690",
|
||||
"name": "clip",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ClipField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"conditioning": {
|
||||
"id": "02140b9d-50f3-470b-a0b7-01fc6ed2dcd6",
|
||||
"name": "conditioning",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 256,
|
||||
"position": {
|
||||
"x": 3425,
|
||||
"y": -575
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
|
||||
"type": "denoise_latents",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.5.0",
|
||||
"inputs": {
|
||||
"positive_conditioning": {
|
||||
"id": "025ff44b-c4c6-4339-91b4-5f461e2cadc5",
|
||||
"name": "positive_conditioning",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
},
|
||||
"negative_conditioning": {
|
||||
"id": "2d92b45a-a7fb-4541-9a47-7c7495f50f54",
|
||||
"name": "negative_conditioning",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ConditioningField"
|
||||
}
|
||||
},
|
||||
"noise": {
|
||||
"id": "4d0deeff-24ed-4562-a1ca-7833c0649377",
|
||||
"name": "noise",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"steps": {
|
||||
"id": "c9907328-aece-4af9-8a95-211b4f99a325",
|
||||
"name": "steps",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 10
|
||||
},
|
||||
"cfg_scale": {
|
||||
"id": "7cf0f031-2078-49f4-9273-bb3a64ad7130",
|
||||
"name": "cfg_scale",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 7.5
|
||||
},
|
||||
"denoising_start": {
|
||||
"id": "44cec3ba-b404-4b51-ba98-add9d783279e",
|
||||
"name": "denoising_start",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"denoising_end": {
|
||||
"id": "3e7975f3-e438-4a13-8a14-395eba1fb7cd",
|
||||
"name": "denoising_end",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 1
|
||||
},
|
||||
"scheduler": {
|
||||
"id": "a6f6509b-7bb4-477d-b5fb-74baefa38111",
|
||||
"name": "scheduler",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "SchedulerField"
|
||||
},
|
||||
"value": "euler"
|
||||
},
|
||||
"unet": {
|
||||
"id": "5a87617a-b09f-417b-9b75-0cea4c255227",
|
||||
"name": "unet",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "UNetField"
|
||||
}
|
||||
},
|
||||
"control": {
|
||||
"id": "db87aace-ace8-4f2a-8f2b-1f752389fa9b",
|
||||
"name": "control",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "ControlField"
|
||||
}
|
||||
},
|
||||
"ip_adapter": {
|
||||
"id": "f0c133ed-4d6d-4567-bb9a-b1779810993c",
|
||||
"name": "ip_adapter",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "IPAdapterField"
|
||||
}
|
||||
},
|
||||
"t2i_adapter": {
|
||||
"id": "59ee1233-887f-45e7-aa14-cbad5f6cb77f",
|
||||
"name": "t2i_adapter",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": true,
|
||||
"name": "T2IAdapterField"
|
||||
}
|
||||
},
|
||||
"cfg_rescale_multiplier": {
|
||||
"id": "1a12e781-4b30-4707-b432-18c31866b5c3",
|
||||
"name": "cfg_rescale_multiplier",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "FloatField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"latents": {
|
||||
"id": "d0e593ae-305c-424b-9acd-3af830085832",
|
||||
"name": "latents",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"denoise_mask": {
|
||||
"id": "b81b5a79-fc2b-4011-aae6-64c92bae59a7",
|
||||
"name": "denoise_mask",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "DenoiseMaskField"
|
||||
}
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"latents": {
|
||||
"id": "9ae4022a-548e-407e-90cf-cc5ca5ff8a21",
|
||||
"name": "latents",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "730ba4bd-2c52-46bb-8c87-9b3aec155576",
|
||||
"name": "width",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "52b98f0b-b5ff-41b5-acc7-d0b1d1011a6f",
|
||||
"name": "height",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 705,
|
||||
"position": {
|
||||
"x": 3975,
|
||||
"y": -575
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
|
||||
"type": "noise",
|
||||
"label": "",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": true,
|
||||
"version": "1.0.1",
|
||||
"inputs": {
|
||||
"seed": {
|
||||
"id": "446ac80c-ba0a-4fea-a2d7-21128f52e5bf",
|
||||
"name": "seed",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"width": {
|
||||
"id": "779831b3-20b4-4f5f-9de7-d17de57288d8",
|
||||
"name": "width",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 512
|
||||
},
|
||||
"height": {
|
||||
"id": "08959766-6d67-4276-b122-e54b911f2316",
|
||||
"name": "height",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 512
|
||||
},
|
||||
"use_cpu": {
|
||||
"id": "53b36a98-00c4-4dc5-97a4-ef3432c0a805",
|
||||
"name": "use_cpu",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": true
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"noise": {
|
||||
"id": "eed95824-580b-442f-aa35-c073733cecce",
|
||||
"name": "noise",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "7985a261-dfee-47a8-908a-c5a8754f5dc4",
|
||||
"name": "width",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "3d00f6c1-84b0-4262-83d9-3bf755babeea",
|
||||
"name": "height",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 3425,
|
||||
"y": 75
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "6fd74a17-6065-47a5-b48b-f4e2b8fa7953",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "6fd74a17-6065-47a5-b48b-f4e2b8fa7953",
|
||||
"type": "rand_int",
|
||||
"label": "",
|
||||
"isOpen": false,
|
||||
"notes": "",
|
||||
"isIntermediate": true,
|
||||
"useCache": false,
|
||||
"version": "1.0.0",
|
||||
"inputs": {
|
||||
"low": {
|
||||
"id": "d25305f3-bfd6-446c-8e2c-0b025ec9e9ad",
|
||||
"name": "low",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 0
|
||||
},
|
||||
"high": {
|
||||
"id": "10376a3d-b8fe-4a51-b81a-ea46d8c12c78",
|
||||
"name": "high",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
},
|
||||
"value": 2147483647
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"value": {
|
||||
"id": "c64878fa-53b1-4202-b88a-cfb854216a57",
|
||||
"name": "value",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 32,
|
||||
"position": {
|
||||
"x": 3425,
|
||||
"y": 0
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
|
||||
"type": "invocation",
|
||||
"data": {
|
||||
"id": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
|
||||
"type": "l2i",
|
||||
"label": "",
|
||||
"isOpen": true,
|
||||
"notes": "",
|
||||
"isIntermediate": false,
|
||||
"useCache": true,
|
||||
"version": "1.2.0",
|
||||
"inputs": {
|
||||
"metadata": {
|
||||
"id": "b1982e8a-14ad-4029-a697-beb30af8340f",
|
||||
"name": "metadata",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "MetadataField"
|
||||
}
|
||||
},
|
||||
"latents": {
|
||||
"id": "f7669388-9f91-46cc-94fc-301fa7041c3e",
|
||||
"name": "latents",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "LatentsField"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"id": "c6f2d4db-4d0a-4e3d-acb4-b5c5a228a3e2",
|
||||
"name": "vae",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "VaeField"
|
||||
}
|
||||
},
|
||||
"tiled": {
|
||||
"id": "19ef7d31-d96f-4e94-b7e5-95914e9076fc",
|
||||
"name": "tiled",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": false
|
||||
},
|
||||
"fp32": {
|
||||
"id": "a9454533-8ab7-4225-b411-646dc5e76d00",
|
||||
"name": "fp32",
|
||||
"fieldKind": "input",
|
||||
"label": "",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "BooleanField"
|
||||
},
|
||||
"value": false
|
||||
}
|
||||
},
|
||||
"outputs": {
|
||||
"image": {
|
||||
"id": "4f81274e-e216-47f3-9fb6-f97493a40e6f",
|
||||
"name": "image",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "ImageField"
|
||||
}
|
||||
},
|
||||
"width": {
|
||||
"id": "61a9acfb-1547-4f1e-8214-e89bd3855ee5",
|
||||
"name": "width",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
},
|
||||
"height": {
|
||||
"id": "b15cc793-4172-4b07-bcf4-5627bbc7d0d7",
|
||||
"name": "height",
|
||||
"fieldKind": "output",
|
||||
"type": {
|
||||
"isCollection": false,
|
||||
"isCollectionOrScalar": false,
|
||||
"name": "IntegerField"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"width": 320,
|
||||
"height": 267,
|
||||
"position": {
|
||||
"x": 4450,
|
||||
"y": -550
|
||||
}
|
||||
}
|
||||
],
|
||||
"edges": [
|
||||
{
|
||||
"id": "6fd74a17-6065-47a5-b48b-f4e2b8fa7953-ea18915f-2c5b-4569-b725-8e9e9122e8d3-collapsed",
|
||||
"source": "6fd74a17-6065-47a5-b48b-f4e2b8fa7953",
|
||||
"target": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
|
||||
"type": "collapsed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-24e9d7ed-4836-4ec4-8f9e-e747721f9818clip-c41e705b-f2e3-4d1a-83c4-e34bb9344966clip",
|
||||
"source": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
|
||||
"target": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"type": "default",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c41e705b-f2e3-4d1a-83c4-e34bb9344966clip-c3fa6872-2599-4a82-a596-b3446a66cf8bclip",
|
||||
"source": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"target": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
|
||||
"type": "default",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-24e9d7ed-4836-4ec4-8f9e-e747721f9818unet-c41e705b-f2e3-4d1a-83c4-e34bb9344966unet",
|
||||
"source": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
|
||||
"target": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"type": "default",
|
||||
"sourceHandle": "unet",
|
||||
"targetHandle": "unet"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c41e705b-f2e3-4d1a-83c4-e34bb9344966unet-ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63unet",
|
||||
"source": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"target": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
|
||||
"type": "default",
|
||||
"sourceHandle": "unet",
|
||||
"targetHandle": "unet"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-85b77bb2-c67a-416a-b3e8-291abe746c44conditioning-ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63negative_conditioning",
|
||||
"source": "85b77bb2-c67a-416a-b3e8-291abe746c44",
|
||||
"target": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
|
||||
"type": "default",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "negative_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c3fa6872-2599-4a82-a596-b3446a66cf8bconditioning-ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63positive_conditioning",
|
||||
"source": "c3fa6872-2599-4a82-a596-b3446a66cf8b",
|
||||
"target": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
|
||||
"type": "default",
|
||||
"sourceHandle": "conditioning",
|
||||
"targetHandle": "positive_conditioning"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-ea18915f-2c5b-4569-b725-8e9e9122e8d3noise-ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63noise",
|
||||
"source": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
|
||||
"target": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
|
||||
"type": "default",
|
||||
"sourceHandle": "noise",
|
||||
"targetHandle": "noise"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-6fd74a17-6065-47a5-b48b-f4e2b8fa7953value-ea18915f-2c5b-4569-b725-8e9e9122e8d3seed",
|
||||
"source": "6fd74a17-6065-47a5-b48b-f4e2b8fa7953",
|
||||
"target": "ea18915f-2c5b-4569-b725-8e9e9122e8d3",
|
||||
"type": "default",
|
||||
"sourceHandle": "value",
|
||||
"targetHandle": "seed"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63latents-a9683c0a-6b1f-4a5e-8187-c57e764b3400latents",
|
||||
"source": "ad487d0c-dcbb-49c5-bb8e-b28d4cbc5a63",
|
||||
"target": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
|
||||
"type": "default",
|
||||
"sourceHandle": "latents",
|
||||
"targetHandle": "latents"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-24e9d7ed-4836-4ec4-8f9e-e747721f9818vae-a9683c0a-6b1f-4a5e-8187-c57e764b3400vae",
|
||||
"source": "24e9d7ed-4836-4ec4-8f9e-e747721f9818",
|
||||
"target": "a9683c0a-6b1f-4a5e-8187-c57e764b3400",
|
||||
"type": "default",
|
||||
"sourceHandle": "vae",
|
||||
"targetHandle": "vae"
|
||||
},
|
||||
{
|
||||
"id": "reactflow__edge-c41e705b-f2e3-4d1a-83c4-e34bb9344966clip-85b77bb2-c67a-416a-b3e8-291abe746c44clip",
|
||||
"source": "c41e705b-f2e3-4d1a-83c4-e34bb9344966",
|
||||
"target": "85b77bb2-c67a-416a-b3e8-291abe746c44",
|
||||
"type": "default",
|
||||
"sourceHandle": "clip",
|
||||
"targetHandle": "clip"
|
||||
}
|
||||
]
|
||||
}
|
@ -169,7 +169,7 @@ class SqliteWorkflowRecordsStorage(WorkflowRecordsStorageBase):
|
||||
|
||||
self._cursor.execute(count_query, count_params)
|
||||
total = self._cursor.fetchone()[0]
|
||||
pages = int(total / per_page) + 1
|
||||
pages = total // per_page + (total % per_page > 0)
|
||||
|
||||
return PaginatedResults(
|
||||
items=workflows,
|
||||
|
8
invokeai/app/util/ti_utils.py
Normal file
@ -0,0 +1,8 @@
|
||||
import re
|
||||
|
||||
|
||||
def extract_ti_triggers_from_prompt(prompt: str) -> list[str]:
|
||||
ti_triggers = []
|
||||
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
||||
ti_triggers.append(trigger)
|
||||
return ti_triggers
|
@ -28,7 +28,7 @@ def check_invokeai_root(config: InvokeAIAppConfig):
|
||||
print("== STARTUP ABORTED ==")
|
||||
print("** One or more necessary files is missing from your InvokeAI root directory **")
|
||||
print("** Please rerun the configuration script to fix this problem. **")
|
||||
print("** From the launcher, selection option [7]. **")
|
||||
print("** From the launcher, selection option [6]. **")
|
||||
print(
|
||||
'** From the command line, activate the virtual environment and run "invokeai-configure --yes --skip-sd-weights" **'
|
||||
)
|
||||
|
31
invokeai/backend/model_management/detect_baked_in_vae.py
Normal file
@ -0,0 +1,31 @@
|
||||
# Copyright (c) 2024 Lincoln Stein and the InvokeAI Development Team
|
||||
"""
|
||||
This module exports the function has_baked_in_sdxl_vae().
|
||||
It returns True if an SDXL checkpoint model has the original SDXL 1.0 VAE,
|
||||
which doesn't work properly in fp16 mode.
|
||||
"""
|
||||
|
||||
import hashlib
|
||||
from pathlib import Path
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
SDXL_1_0_VAE_HASH = "bc40b16c3a0fa4625abdfc01c04ffc21bf3cefa6af6c7768ec61eb1f1ac0da51"
|
||||
|
||||
|
||||
def has_baked_in_sdxl_vae(checkpoint_path: Path) -> bool:
|
||||
"""Return true if the checkpoint contains a custom (non SDXL-1.0) VAE."""
|
||||
hash = _vae_hash(checkpoint_path)
|
||||
return hash != SDXL_1_0_VAE_HASH
|
||||
|
||||
|
||||
def _vae_hash(checkpoint_path: Path) -> str:
|
||||
checkpoint = load_file(checkpoint_path, device="cpu")
|
||||
vae_keys = [x for x in checkpoint.keys() if x.startswith("first_stage_model.")]
|
||||
hash = hashlib.new("sha256")
|
||||
for key in vae_keys:
|
||||
value = checkpoint[key]
|
||||
hash.update(bytes(key, "UTF-8"))
|
||||
hash.update(bytes(str(value), "UTF-8"))
|
||||
|
||||
return hash.hexdigest()
|
@ -13,6 +13,7 @@ from safetensors.torch import load_file
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_management.model_load_optimizations import skip_torch_weight_init
|
||||
|
||||
from .models.lora import LoRAModel
|
||||
|
||||
@ -211,11 +212,17 @@ class ModelPatcher:
|
||||
for i in range(ti_embedding.shape[0]):
|
||||
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
|
||||
|
||||
# modify text_encoder
|
||||
# Modify text_encoder.
|
||||
# resize_token_embeddings(...) constructs a new torch.nn.Embedding internally. Initializing the weights of
|
||||
# this embedding is slow and unnecessary, so we wrap this step in skip_torch_weight_init() to save some
|
||||
# time.
|
||||
with skip_torch_weight_init():
|
||||
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added, pad_to_multiple_of)
|
||||
model_embeddings = text_encoder.get_input_embeddings()
|
||||
|
||||
for ti_name, _ in ti_list:
|
||||
for ti_name, ti in ti_list:
|
||||
ti_embedding = _get_ti_embedding(text_encoder.get_input_embeddings(), ti)
|
||||
|
||||
ti_tokens = []
|
||||
for i in range(ti_embedding.shape[0]):
|
||||
embedding = ti_embedding[i]
|
||||
|
@ -370,6 +370,8 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif token_vector_length == 1024:
|
||||
return BaseModelType.StableDiffusion2
|
||||
elif token_vector_length == 1280:
|
||||
return BaseModelType.StableDiffusionXL # recognizes format at https://civitai.com/models/224641
|
||||
elif token_vector_length == 2048:
|
||||
return BaseModelType.StableDiffusionXL
|
||||
else:
|
||||
@ -389,7 +391,7 @@ class TextualInversionCheckpointProbe(CheckpointProbeBase):
|
||||
elif "clip_g" in checkpoint:
|
||||
token_dim = checkpoint["clip_g"].shape[-1]
|
||||
else:
|
||||
token_dim = list(checkpoint.values())[0].shape[0]
|
||||
token_dim = list(checkpoint.values())[0].shape[-1]
|
||||
if token_dim == 768:
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif token_dim == 1024:
|
||||
|
@ -1,11 +1,16 @@
|
||||
import json
|
||||
import os
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Literal, Optional
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from pydantic import Field
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.model_management.detect_baked_in_vae import has_baked_in_sdxl_vae
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .base import (
|
||||
BaseModelType,
|
||||
DiffusersModel,
|
||||
@ -116,14 +121,28 @@ class StableDiffusionXLModel(DiffusersModel):
|
||||
# The convert script adapted from the diffusers package uses
|
||||
# strings for the base model type. To avoid making too many
|
||||
# source code changes, we simply translate here
|
||||
if Path(output_path).exists():
|
||||
return output_path
|
||||
|
||||
if isinstance(config, cls.CheckpointConfig):
|
||||
from invokeai.backend.model_management.models.stable_diffusion import _convert_ckpt_and_cache
|
||||
|
||||
# Hack in VAE-fp16 fix - If model sdxl-vae-fp16-fix is installed,
|
||||
# then we bake it into the converted model unless there is already
|
||||
# a nonstandard VAE installed.
|
||||
kwargs = {}
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
vae_path = app_config.models_path / "sdxl/vae/sdxl-vae-fp16-fix"
|
||||
if vae_path.exists() and not has_baked_in_sdxl_vae(Path(model_path)):
|
||||
InvokeAILogger.get_logger().warning("No baked-in VAE detected. Inserting sdxl-vae-fp16-fix.")
|
||||
kwargs["vae_path"] = vae_path
|
||||
|
||||
return _convert_ckpt_and_cache(
|
||||
version=base_model,
|
||||
model_config=config,
|
||||
output_path=output_path,
|
||||
use_safetensors=False, # corrupts sdxl models for some reason
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
return model_path
|
||||
|
@ -9,7 +9,7 @@ def lora_token_vector_length(checkpoint: dict) -> int:
|
||||
:param checkpoint: The checkpoint
|
||||
"""
|
||||
|
||||
def _get_shape_1(key, tensor, checkpoint):
|
||||
def _get_shape_1(key: str, tensor, checkpoint) -> int:
|
||||
lora_token_vector_length = None
|
||||
|
||||
if "." not in key:
|
||||
@ -57,6 +57,10 @@ def lora_token_vector_length(checkpoint: dict) -> int:
|
||||
for key, tensor in checkpoint.items():
|
||||
if key.startswith("lora_unet_") and ("_attn2_to_k." in key or "_attn2_to_v." in key):
|
||||
lora_token_vector_length = _get_shape_1(key, tensor, checkpoint)
|
||||
elif key.startswith("lora_unet_") and (
|
||||
"time_emb_proj.lora_down" in key
|
||||
): # recognizes format at https://civitai.com/models/224641
|
||||
lora_token_vector_length = _get_shape_1(key, tensor, checkpoint)
|
||||
elif key.startswith("lora_te") and "_self_attn_" in key:
|
||||
tmp_length = _get_shape_1(key, tensor, checkpoint)
|
||||
if key.startswith("lora_te_"):
|
||||
|
@ -400,6 +400,8 @@ class LoRACheckpointProbe(CheckpointProbeBase):
|
||||
return BaseModelType.StableDiffusion1
|
||||
elif token_vector_length == 1024:
|
||||
return BaseModelType.StableDiffusion2
|
||||
elif token_vector_length == 1280:
|
||||
return BaseModelType.StableDiffusionXL # recognizes format at https://civitai.com/models/224641
|
||||
elif token_vector_length == 2048:
|
||||
return BaseModelType.StableDiffusionXL
|
||||
else:
|
||||
|
@ -276,7 +276,11 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
self.disable_attention_slicing()
|
||||
return
|
||||
elif config.attention_type == "torch-sdp":
|
||||
raise Exception("torch-sdp attention slicing not yet implemented")
|
||||
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
||||
# diffusers enables sdp automatically
|
||||
return
|
||||
else:
|
||||
raise Exception("torch-sdp attention slicing not available")
|
||||
|
||||
# the remainder if this code is called when attention_type=='auto'
|
||||
if self.unet.device.type == "cuda":
|
||||
@ -284,7 +288,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
self.enable_xformers_memory_efficient_attention()
|
||||
return
|
||||
elif hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
||||
# diffusers enable sdp automatically
|
||||
# diffusers enables sdp automatically
|
||||
return
|
||||
|
||||
if self.unet.device.type == "cpu" or self.unet.device.type == "mps":
|
||||
|
@ -102,7 +102,7 @@ def calc_tiles_with_overlap(
|
||||
|
||||
|
||||
def calc_tiles_even_split(
|
||||
image_height: int, image_width: int, num_tiles_x: int, num_tiles_y: int, overlap_fraction: float = 0
|
||||
image_height: int, image_width: int, num_tiles_x: int, num_tiles_y: int, overlap: int = 0
|
||||
) -> list[Tile]:
|
||||
"""Calculate the tile coordinates for a given image shape with the number of tiles requested.
|
||||
|
||||
@ -111,31 +111,35 @@ def calc_tiles_even_split(
|
||||
image_width (int): The image width in px.
|
||||
num_x_tiles (int): The number of tile to split the image into on the X-axis.
|
||||
num_y_tiles (int): The number of tile to split the image into on the Y-axis.
|
||||
overlap_fraction (float, optional): The target overlap as fraction of the tiles size. Defaults to 0.
|
||||
overlap (int, optional): The overlap between adjacent tiles in pixels. Defaults to 0.
|
||||
|
||||
Returns:
|
||||
list[Tile]: A list of tiles that cover the image shape. Ordered from left-to-right, top-to-bottom.
|
||||
"""
|
||||
|
||||
# Ensure tile size is divisible by 8
|
||||
# Ensure the image is divisible by LATENT_SCALE_FACTOR
|
||||
if image_width % LATENT_SCALE_FACTOR != 0 or image_height % LATENT_SCALE_FACTOR != 0:
|
||||
raise ValueError(f"image size (({image_width}, {image_height})) must be divisible by {LATENT_SCALE_FACTOR}")
|
||||
|
||||
# Calculate the overlap size based on the percentage and adjust it to be divisible by 8 (rounding up)
|
||||
overlap_x = LATENT_SCALE_FACTOR * math.ceil(
|
||||
int((image_width / num_tiles_x) * overlap_fraction) / LATENT_SCALE_FACTOR
|
||||
)
|
||||
overlap_y = LATENT_SCALE_FACTOR * math.ceil(
|
||||
int((image_height / num_tiles_y) * overlap_fraction) / LATENT_SCALE_FACTOR
|
||||
)
|
||||
|
||||
# Calculate the tile size based on the number of tiles and overlap, and ensure it's divisible by 8 (rounding down)
|
||||
if num_tiles_x > 1:
|
||||
# ensure the overlap is not more than the maximum overlap if we only have 1 tile then we dont care about overlap
|
||||
assert overlap <= image_width - (LATENT_SCALE_FACTOR * (num_tiles_x - 1))
|
||||
tile_size_x = LATENT_SCALE_FACTOR * math.floor(
|
||||
((image_width + overlap_x * (num_tiles_x - 1)) // num_tiles_x) / LATENT_SCALE_FACTOR
|
||||
((image_width + overlap * (num_tiles_x - 1)) // num_tiles_x) / LATENT_SCALE_FACTOR
|
||||
)
|
||||
assert overlap < tile_size_x
|
||||
else:
|
||||
tile_size_x = image_width
|
||||
|
||||
if num_tiles_y > 1:
|
||||
# ensure the overlap is not more than the maximum overlap if we only have 1 tile then we dont care about overlap
|
||||
assert overlap <= image_height - (LATENT_SCALE_FACTOR * (num_tiles_y - 1))
|
||||
tile_size_y = LATENT_SCALE_FACTOR * math.floor(
|
||||
((image_height + overlap_y * (num_tiles_y - 1)) // num_tiles_y) / LATENT_SCALE_FACTOR
|
||||
((image_height + overlap * (num_tiles_y - 1)) // num_tiles_y) / LATENT_SCALE_FACTOR
|
||||
)
|
||||
assert overlap < tile_size_y
|
||||
else:
|
||||
tile_size_y = image_height
|
||||
|
||||
# tiles[y * num_tiles_x + x] is the tile for the y'th row, x'th column.
|
||||
tiles: list[Tile] = []
|
||||
@ -143,7 +147,7 @@ def calc_tiles_even_split(
|
||||
# Calculate tile coordinates. (Ignore overlap values for now.)
|
||||
for tile_idx_y in range(num_tiles_y):
|
||||
# Calculate the top and bottom of the row
|
||||
top = tile_idx_y * (tile_size_y - overlap_y)
|
||||
top = tile_idx_y * (tile_size_y - overlap)
|
||||
bottom = min(top + tile_size_y, image_height)
|
||||
# For the last row adjust bottom to be the height of the image
|
||||
if tile_idx_y == num_tiles_y - 1:
|
||||
@ -151,7 +155,7 @@ def calc_tiles_even_split(
|
||||
|
||||
for tile_idx_x in range(num_tiles_x):
|
||||
# Calculate the left & right coordinate of each tile
|
||||
left = tile_idx_x * (tile_size_x - overlap_x)
|
||||
left = tile_idx_x * (tile_size_x - overlap)
|
||||
right = min(left + tile_size_x, image_width)
|
||||
# For the last tile in the row adjust right to be the width of the image
|
||||
if tile_idx_x == num_tiles_x - 1:
|
||||
|
@ -1,11 +1,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import platform
|
||||
from contextlib import nullcontext
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from packaging import version
|
||||
from torch import autocast
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
@ -37,7 +35,7 @@ def choose_precision(device: torch.device) -> str:
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
if not ("GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name):
|
||||
return "float16"
|
||||
elif device.type == "mps" and version.parse(platform.mac_ver()[0]) < version.parse("14.0.0"):
|
||||
elif device.type == "mps":
|
||||
return "float16"
|
||||
return "float32"
|
||||
|
||||
@ -46,7 +44,7 @@ def torch_dtype(device: torch.device) -> torch.dtype:
|
||||
if config.full_precision:
|
||||
return torch.float32
|
||||
if choose_precision(device) == "float16":
|
||||
return torch.float16
|
||||
return torch.bfloat16 if device.type == "cuda" else torch.float16
|
||||
else:
|
||||
return torch.float32
|
||||
|
||||
|
@ -4,6 +4,7 @@ pip install <path_to_git_source>.
|
||||
"""
|
||||
import os
|
||||
import platform
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import pkg_resources
|
||||
import psutil
|
||||
@ -31,10 +32,6 @@ else:
|
||||
console = Console(style=Style(color="grey74", bgcolor="grey19"))
|
||||
|
||||
|
||||
def get_versions() -> dict:
|
||||
return requests.get(url=INVOKE_AI_REL).json()
|
||||
|
||||
|
||||
def invokeai_is_running() -> bool:
|
||||
for p in psutil.process_iter():
|
||||
try:
|
||||
@ -50,6 +47,20 @@ def invokeai_is_running() -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def get_pypi_versions():
|
||||
url = "https://pypi.org/pypi/invokeai/json"
|
||||
try:
|
||||
data = requests.get(url).json()
|
||||
except Exception:
|
||||
raise Exception("Unable to fetch version information from PyPi")
|
||||
|
||||
versions = list(data["releases"].keys())
|
||||
versions.sort(key=LooseVersion, reverse=True)
|
||||
latest_version = [v for v in versions if "rc" not in v][0]
|
||||
latest_release_candidate = [v for v in versions if "rc" in v][0]
|
||||
return latest_version, latest_release_candidate, versions
|
||||
|
||||
|
||||
def welcome(latest_release: str, latest_prerelease: str):
|
||||
@group()
|
||||
def text():
|
||||
@ -57,14 +68,10 @@ def welcome(latest_release: str, latest_prerelease: str):
|
||||
yield ""
|
||||
yield "This script will update InvokeAI to the latest release, or to the development version of your choice."
|
||||
yield ""
|
||||
yield "When updating to an arbitrary tag or branch, be aware that the front end may be mismatched to the backend,"
|
||||
yield "making the web frontend unusable. Please downgrade to the latest release if this happens."
|
||||
yield ""
|
||||
yield "[bold yellow]Options:"
|
||||
yield f"""[1] Update to the latest [bold]official release[/bold] ([italic]{latest_release}[/italic])
|
||||
[2] Update to the latest [bold]pre-release[/bold] (may be buggy; caveat emptor!) ([italic]{latest_prerelease}[/italic])
|
||||
[3] Manually enter the [bold]tag name[/bold] for the version you wish to update to
|
||||
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to"""
|
||||
[2] Update to the latest [bold]pre-release[/bold] (may be buggy, database backups are recommended before installation; caveat emptor!) ([italic]{latest_prerelease}[/italic])
|
||||
[3] Manually enter the [bold]version[/bold] you wish to update to"""
|
||||
|
||||
console.rule()
|
||||
print(
|
||||
@ -92,44 +99,35 @@ def get_extras():
|
||||
|
||||
|
||||
def main():
|
||||
versions = get_versions()
|
||||
released_versions = [x for x in versions if not (x["draft"] or x["prerelease"])]
|
||||
prerelease_versions = [x for x in versions if not x["draft"] and x["prerelease"]]
|
||||
latest_release = released_versions[0]["tag_name"] if len(released_versions) else None
|
||||
latest_prerelease = prerelease_versions[0]["tag_name"] if len(prerelease_versions) else None
|
||||
|
||||
if invokeai_is_running():
|
||||
print(":exclamation: [bold red]Please terminate all running instances of InvokeAI before updating.[/red bold]")
|
||||
input("Press any key to continue...")
|
||||
return
|
||||
|
||||
latest_release, latest_prerelease, versions = get_pypi_versions()
|
||||
|
||||
welcome(latest_release, latest_prerelease)
|
||||
|
||||
tag = None
|
||||
branch = None
|
||||
release = None
|
||||
choice = Prompt.ask("Choice:", choices=["1", "2", "3", "4"], default="1")
|
||||
release = latest_release
|
||||
choice = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1")
|
||||
|
||||
if choice == "1":
|
||||
release = latest_release
|
||||
elif choice == "2":
|
||||
release = latest_prerelease
|
||||
elif choice == "3":
|
||||
while not tag:
|
||||
tag = Prompt.ask("Enter an InvokeAI tag name")
|
||||
elif choice == "4":
|
||||
while not branch:
|
||||
branch = Prompt.ask("Enter an InvokeAI branch name")
|
||||
while True:
|
||||
release = Prompt.ask("Enter an InvokeAI version")
|
||||
release.strip()
|
||||
if release in versions:
|
||||
break
|
||||
print(f":exclamation: [bold red]'{release}' is not a recognized InvokeAI release.[/red bold]")
|
||||
|
||||
extras = get_extras()
|
||||
|
||||
print(f":crossed_fingers: Upgrading to [yellow]{tag or release or branch}[/yellow]")
|
||||
if release:
|
||||
cmd = f'pip install "invokeai{extras} @ {INVOKE_AI_SRC}/{release}.zip" --use-pep517 --upgrade'
|
||||
elif tag:
|
||||
cmd = f'pip install "invokeai{extras} @ {INVOKE_AI_TAG}/{tag}.zip" --use-pep517 --upgrade'
|
||||
else:
|
||||
cmd = f'pip install "invokeai{extras} @ {INVOKE_AI_BRANCH}/{branch}.zip" --use-pep517 --upgrade'
|
||||
print(f":crossed_fingers: Upgrading to [yellow]{release}[/yellow]")
|
||||
cmd = f'pip install "invokeai{extras}=={release}" --use-pep517 --upgrade'
|
||||
|
||||
print("")
|
||||
print("")
|
||||
if os.system(cmd) == 0:
|
||||
|
@ -7,4 +7,4 @@ stats.html
|
||||
index.html
|
||||
.yarn/
|
||||
*.scss
|
||||
src/services/api/schema.d.ts
|
||||
src/services/api/schema.ts
|
||||
|
@ -28,12 +28,16 @@ module.exports = {
|
||||
'i18next',
|
||||
'path',
|
||||
'unused-imports',
|
||||
'simple-import-sort',
|
||||
'eslint-plugin-import',
|
||||
// These rules are too strict for normal usage, but are useful for optimizing rerenders
|
||||
// '@arthurgeron/react-usememo',
|
||||
],
|
||||
root: true,
|
||||
rules: {
|
||||
'path/no-relative-imports': ['error', { maxDepth: 0 }],
|
||||
curly: 'error',
|
||||
'i18next/no-literal-string': 2,
|
||||
'i18next/no-literal-string': 'warn',
|
||||
'react/jsx-no-bind': ['error', { allowBind: true }],
|
||||
'react/jsx-curly-brace-presence': [
|
||||
'error',
|
||||
@ -43,6 +47,7 @@ module.exports = {
|
||||
'no-var': 'error',
|
||||
'brace-style': 'error',
|
||||
'prefer-template': 'error',
|
||||
'import/no-duplicates': 'error',
|
||||
radix: 'error',
|
||||
'space-before-blocks': 'error',
|
||||
'import/prefer-default-export': 'off',
|
||||
@ -57,6 +62,18 @@ module.exports = {
|
||||
argsIgnorePattern: '^_',
|
||||
},
|
||||
],
|
||||
// These rules are too strict for normal usage, but are useful for optimizing rerenders
|
||||
// '@arthurgeron/react-usememo/require-usememo': [
|
||||
// 'warn',
|
||||
// {
|
||||
// strict: false,
|
||||
// checkHookReturnObject: false,
|
||||
// fix: { addImports: true },
|
||||
// checkHookCalls: false,
|
||||
|
||||
// },
|
||||
// ],
|
||||
// '@arthurgeron/react-usememo/require-memo': 'warn',
|
||||
'@typescript-eslint/ban-ts-comment': 'warn',
|
||||
'@typescript-eslint/no-explicit-any': 'warn',
|
||||
'@typescript-eslint/no-empty-interface': [
|
||||
@ -65,7 +82,26 @@ module.exports = {
|
||||
allowSingleExtends: true,
|
||||
},
|
||||
],
|
||||
'@typescript-eslint/consistent-type-imports': [
|
||||
'error',
|
||||
{
|
||||
prefer: 'type-imports',
|
||||
fixStyle: 'separate-type-imports',
|
||||
disallowTypeAnnotations: true,
|
||||
},
|
||||
],
|
||||
'@typescript-eslint/no-import-type-side-effects': 'error',
|
||||
'simple-import-sort/imports': 'error',
|
||||
'simple-import-sort/exports': 'error',
|
||||
},
|
||||
overrides: [
|
||||
{
|
||||
files: ['*.stories.tsx'],
|
||||
rules: {
|
||||
'i18next/no-literal-string': 'off',
|
||||
},
|
||||
},
|
||||
],
|
||||
settings: {
|
||||
react: {
|
||||
version: 'detect',
|
||||
|
1
invokeai/frontend/web/.gitignore
vendored
@ -8,6 +8,7 @@ pnpm-debug.log*
|
||||
lerna-debug.log*
|
||||
|
||||
node_modules
|
||||
.pnpm-store
|
||||
# We want to distribute the repo
|
||||
dist
|
||||
dist/**
|
||||
|
@ -9,7 +9,8 @@ index.html
|
||||
.yarn/
|
||||
.yalc/
|
||||
*.scss
|
||||
src/services/api/schema.d.ts
|
||||
src/services/api/schema.ts
|
||||
static/
|
||||
src/theme/css/overlayscrollbars.css
|
||||
src/theme_/css/overlayscrollbars.css
|
||||
pnpm-lock.yaml
|
||||
|
25
invokeai/frontend/web/.storybook/ReduxInit.tsx
Normal file
@ -0,0 +1,25 @@
|
||||
import { PropsWithChildren, memo, useEffect } from 'react';
|
||||
import { modelChanged } from '../src/features/parameters/store/generationSlice';
|
||||
import { useAppDispatch } from '../src/app/store/storeHooks';
|
||||
import { useGlobalModifiersInit } from '../src/common/hooks/useGlobalModifiers';
|
||||
/**
|
||||
* Initializes some state for storybook. Must be in a different component
|
||||
* so that it is run inside the redux context.
|
||||
*/
|
||||
export const ReduxInit = memo((props: PropsWithChildren) => {
|
||||
const dispatch = useAppDispatch();
|
||||
useGlobalModifiersInit();
|
||||
useEffect(() => {
|
||||
dispatch(
|
||||
modelChanged({
|
||||
model_name: 'test_model',
|
||||
base_model: 'sd-1',
|
||||
model_type: 'main',
|
||||
})
|
||||
);
|
||||
}, []);
|
||||
|
||||
return props.children;
|
||||
});
|
||||
|
||||
ReduxInit.displayName = 'ReduxInit';
|
@ -6,6 +6,7 @@ const config: StorybookConfig = {
|
||||
'@storybook/addon-links',
|
||||
'@storybook/addon-essentials',
|
||||
'@storybook/addon-interactions',
|
||||
'@storybook/addon-storysource',
|
||||
],
|
||||
framework: {
|
||||
name: '@storybook/react-vite',
|
||||
|
@ -1,16 +1,17 @@
|
||||
import { Preview } from '@storybook/react';
|
||||
import { themes } from '@storybook/theming';
|
||||
import i18n from 'i18next';
|
||||
import React from 'react';
|
||||
import { initReactI18next } from 'react-i18next';
|
||||
import { Provider } from 'react-redux';
|
||||
import GlobalHotkeys from '../src/app/components/GlobalHotkeys';
|
||||
import ThemeLocaleProvider from '../src/app/components/ThemeLocaleProvider';
|
||||
import { $baseUrl } from '../src/app/store/nanostores/baseUrl';
|
||||
import { createStore } from '../src/app/store/store';
|
||||
import { Container } from '@chakra-ui/react';
|
||||
// TODO: Disabled for IDE performance issues with our translation JSON
|
||||
// eslint-disable-next-line @typescript-eslint/ban-ts-comment
|
||||
// @ts-ignore
|
||||
import translationEN from '../public/locales/en.json';
|
||||
import { ReduxInit } from './ReduxInit';
|
||||
|
||||
i18n.use(initReactI18next).init({
|
||||
lng: 'en',
|
||||
@ -25,17 +26,21 @@ i18n.use(initReactI18next).init({
|
||||
});
|
||||
|
||||
const store = createStore(undefined, false);
|
||||
$baseUrl.set('http://localhost:9090');
|
||||
|
||||
const preview: Preview = {
|
||||
decorators: [
|
||||
(Story) => (
|
||||
(Story) => {
|
||||
return (
|
||||
<Provider store={store}>
|
||||
<ThemeLocaleProvider>
|
||||
<GlobalHotkeys />
|
||||
<ReduxInit>
|
||||
<Story />
|
||||
</ReduxInit>
|
||||
</ThemeLocaleProvider>
|
||||
</Provider>
|
||||
),
|
||||
);
|
||||
},
|
||||
],
|
||||
parameters: {
|
||||
docs: {
|
||||
|
15
invokeai/frontend/web/.unimportedrc.json
Normal file
@ -0,0 +1,15 @@
|
||||
{
|
||||
"entry": ["src/main.tsx"],
|
||||
"extensions": [".ts", ".tsx"],
|
||||
"ignorePatterns": [
|
||||
"**/node_modules/**",
|
||||
"dist/**",
|
||||
"public/**",
|
||||
"**/*.stories.tsx",
|
||||
"config/**"
|
||||
],
|
||||
"ignoreUnresolved": [],
|
||||
"ignoreUnimported": ["src/i18.d.ts", "vite.config.ts", "src/vite-env.d.ts"],
|
||||
"respectGitignore": true,
|
||||
"ignoreUnused": []
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
import react from '@vitejs/plugin-react-swc';
|
||||
import { visualizer } from 'rollup-plugin-visualizer';
|
||||
import { PluginOption, UserConfig } from 'vite';
|
||||
import type { PluginOption, UserConfig } from 'vite';
|
||||
import eslint from 'vite-plugin-eslint';
|
||||
import tsconfigPaths from 'vite-tsconfig-paths';
|
||||
|
@ -1,5 +1,6 @@
|
||||
import { UserConfig } from 'vite';
|
||||
import { commonPlugins } from './common';
|
||||
import type { UserConfig } from 'vite';
|
||||
|
||||
import { commonPlugins } from './common.mjs';
|
||||
|
||||
export const appConfig: UserConfig = {
|
||||
base: './',
|
@ -1,8 +1,9 @@
|
||||
import path from 'path';
|
||||
import { UserConfig } from 'vite';
|
||||
import dts from 'vite-plugin-dts';
|
||||
import type { UserConfig } from 'vite';
|
||||
import cssInjectedByJsPlugin from 'vite-plugin-css-injected-by-js';
|
||||
import { commonPlugins } from './common';
|
||||
import dts from 'vite-plugin-dts';
|
||||
|
||||
import { commonPlugins } from './common.mjs';
|
||||
|
||||
export const packageConfig: UserConfig = {
|
||||
base: './',
|
Before Width: | Height: | Size: 116 KiB |
@ -1,13 +1,14 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
|
||||
<head>
|
||||
<meta charset="UTF-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate">
|
||||
<meta http-equiv="Pragma" content="no-cache">
|
||||
<meta http-equiv="Expires" content="0">
|
||||
<title>InvokeAI - A Stable Diffusion Toolkit</title>
|
||||
<link rel="shortcut icon" type="icon" href="favicon.ico" />
|
||||
<title>Invoke - Community Edition</title>
|
||||
<link rel="icon" type="icon" href="assets/images/invoke-favicon.svg" />
|
||||
<style>
|
||||
html,
|
||||
body {
|
||||
@ -15,10 +16,11 @@
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
</head>
|
||||
|
||||
<body dir="ltr">
|
||||
<body dir="ltr">
|
||||
<div id="root"></div>
|
||||
<script type="module" src="/src/main.tsx"></script>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
</html>
|