from typing import TYPE_CHECKING, Callable, Optional import torch from PIL import Image from invokeai.app.services.session_processor.session_processor_common import CanceledException, ProgressImage from invokeai.backend.model_manager.config import BaseModelType from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState from invokeai.backend.util.util import image_to_dataURL if TYPE_CHECKING: from invokeai.app.services.events.events_base import EventServiceBase from invokeai.app.services.shared.invocation_context import InvocationContextData # fast latents preview matrix for sdxl # generated by @StAlKeR7779 SDXL_LATENT_RGB_FACTORS = [ # R G B [0.3816, 0.4930, 0.5320], [-0.3753, 0.1631, 0.1739], [0.1770, 0.3588, -0.2048], [-0.4350, -0.2644, -0.4289], ] SDXL_SMOOTH_MATRIX = [ [0.0358, 0.0964, 0.0358], [0.0964, 0.4711, 0.0964], [0.0358, 0.0964, 0.0358], ] # origingally adapted from code by @erucipe and @keturn here: # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7 # these updated numbers for v1.5 are from @torridgristle SD1_5_LATENT_RGB_FACTORS = [ # R G B [0.3444, 0.1385, 0.0670], # L1 [0.1247, 0.4027, 0.1494], # L2 [-0.3192, 0.2513, 0.2103], # L3 [-0.1307, -0.1874, -0.7445], # L4 ] def sample_to_lowres_estimated_image( samples: torch.Tensor, latent_rgb_factors: torch.Tensor, smooth_matrix: Optional[torch.Tensor] = None ): latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors if smooth_matrix is not None: latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2) latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1, 1, 3, 3)), padding=1) latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0) latents_ubyte = ( ((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255 ).cpu() return Image.fromarray(latents_ubyte.numpy()) def stable_diffusion_step_callback( context_data: "InvocationContextData", intermediate_state: PipelineIntermediateState, base_model: BaseModelType, events: "EventServiceBase", is_canceled: Callable[[], bool], ) -> None: if is_canceled(): raise CanceledException # Some schedulers report not only the noisy latents at the current timestep, # but also their estimate so far of what the de-noised latents will be. Use # that estimate if it is available. if intermediate_state.predicted_original is not None: sample = intermediate_state.predicted_original else: sample = intermediate_state.latents if base_model in [BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner]: sdxl_latent_rgb_factors = torch.tensor(SDXL_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device) sdxl_smooth_matrix = torch.tensor(SDXL_SMOOTH_MATRIX, dtype=sample.dtype, device=sample.device) image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix) else: v1_5_latent_rgb_factors = torch.tensor(SD1_5_LATENT_RGB_FACTORS, dtype=sample.dtype, device=sample.device) image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors) (width, height) = image.size width *= 8 height *= 8 dataURL = image_to_dataURL(image, image_format="JPEG") events.emit_invocation_denoise_progress( context_data.queue_item, context_data.invocation, intermediate_state, ProgressImage(dataURL=dataURL, width=width, height=height), )