from contextlib import nullcontext from functools import singledispatchmethod import einops import torch from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR from invokeai.app.invocations.fields import ( FieldDescriptions, ImageField, Input, InputField, ) from invokeai.app.invocations.model import VAEField from invokeai.app.invocations.primitives import LatentsOutput from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.model_manager import LoadedModel from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params @invocation( "i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents", version="1.1.0", ) class ImageToLatentsInvocation(BaseInvocation): """Encodes an image into latents.""" image: ImageField = InputField( description="The image to encode", ) vae: VAEField = InputField( description=FieldDescriptions.vae, input=Input.Connection, ) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) # NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not # offer a way to directly set None values. tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size) fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32) @staticmethod def vae_encode( vae_info: LoadedModel, upcast: bool, tiled: bool, image_tensor: torch.Tensor, tile_size: int = 0 ) -> torch.Tensor: with vae_info as vae: assert isinstance(vae, (AutoencoderKL, AutoencoderTiny)) orig_dtype = vae.dtype if upcast: vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance( vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: vae.post_quant_conv.to(orig_dtype) vae.decoder.conv_in.to(orig_dtype) vae.decoder.mid_block.to(orig_dtype) # else: # latents = latents.float() else: vae.to(dtype=torch.float16) # latents = latents.half() if tiled: vae.enable_tiling() else: vae.disable_tiling() tiling_context = nullcontext() if tile_size > 0: tiling_context = patch_vae_tiling_params( vae, tile_sample_min_size=tile_size, tile_latent_min_size=tile_size // LATENT_SCALE_FACTOR, tile_overlap_factor=0.25, ) # non_noised_latents_from_image image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype) with torch.inference_mode(), tiling_context: latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor) latents = vae.config.scaling_factor * latents latents = latents.to(dtype=orig_dtype) return latents @torch.no_grad() def invoke(self, context: InvocationContext) -> LatentsOutput: image = context.images.get_pil(self.image.image_name) vae_info = context.models.load(self.vae.vae) image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB")) if image_tensor.dim() == 3: image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w") latents = self.vae_encode( vae_info=vae_info, upcast=self.fp32, tiled=self.tiled, image_tensor=image_tensor, tile_size=self.tile_size ) latents = latents.to("cpu") name = context.tensors.save(tensor=latents) return LatentsOutput.build(latents_name=name, latents=latents, seed=None) @singledispatchmethod @staticmethod def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor: assert isinstance(vae, torch.nn.Module) image_tensor_dist = vae.encode(image_tensor).latent_dist latents: torch.Tensor = image_tensor_dist.sample().to( dtype=vae.dtype ) # FIXME: uses torch.randn. make reproducible! return latents @_encode_to_tensor.register @staticmethod def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor: assert isinstance(vae, torch.nn.Module) latents: torch.FloatTensor = vae.encode(image_tensor).latents return latents