"""Makes available the Txt2Mask class, which assists in the automatic assignment of masks via text prompt using clipseg. Here is typical usage: from invokeai.backend.image_util.txt2mask import Txt2Mask, SegmentedGrayscale from PIL import Image txt2mask = Txt2Mask(self.device) segmented = txt2mask.segment(Image.open('/path/to/img.png'),'a bagel') # this will return a grayscale Image of the segmented data grayscale = segmented.to_grayscale() # this will return a semi-transparent image in which the # selected object(s) are opaque and the rest is at various # levels of transparency transparent = segmented.to_transparent() # this will return a masked image suitable for use in inpainting: mask = segmented.to_mask(threshold=0.5) The threshold used in the call to to_mask() selects pixels for use in the mask that exceed the indicated confidence threshold. Values range from 0.0 to 1.0. The higher the threshold, the more confident the algorithm is. In limited testing, I have found that values around 0.5 work fine. """ import numpy as np import torch from PIL import Image, ImageOps from transformers import AutoProcessor, CLIPSegForImageSegmentation import invokeai.backend.util.logging as logger from invokeai.backend.globals import global_cache_dir CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined" CLIPSEG_SIZE = 352 class SegmentedGrayscale(object): def __init__(self, image: Image, heatmap: torch.Tensor): self.heatmap = heatmap self.image = image def to_grayscale(self, invert: bool = False) -> Image: return self._rescale( Image.fromarray( np.uint8(255 - self.heatmap * 255 if invert else self.heatmap * 255) ) ) def to_mask(self, threshold: float = 0.5) -> Image: discrete_heatmap = self.heatmap.lt(threshold).int() return self._rescale( Image.fromarray(np.uint8(discrete_heatmap * 255), mode="L") ) def to_transparent(self, invert: bool = False) -> Image: transparent_image = self.image.copy() # For img2img, we want the selected regions to be transparent, # but to_grayscale() returns the opposite. Thus invert. gs = self.to_grayscale(not invert) transparent_image.putalpha(gs) return transparent_image # unscales and uncrops the 352x352 heatmap so that it matches the image again def _rescale(self, heatmap: Image) -> Image: size = ( self.image.width if (self.image.width > self.image.height) else self.image.height ) resized_image = heatmap.resize((size, size), resample=Image.Resampling.LANCZOS) return resized_image.crop((0, 0, self.image.width, self.image.height)) class Txt2Mask(object): """ Create new Txt2Mask object. The optional device argument can be one of 'cuda', 'mps' or 'cpu'. """ def __init__(self, device="cpu", refined=False): logger.info("Initializing clipseg model for text to mask inference") # BUG: we are not doing anything with the device option at this time self.device = device self.processor = AutoProcessor.from_pretrained( CLIPSEG_MODEL, cache_dir=global_cache_dir("hub") ) self.model = CLIPSegForImageSegmentation.from_pretrained( CLIPSEG_MODEL, cache_dir=global_cache_dir("hub") ) @torch.no_grad() def segment(self, image, prompt: str) -> SegmentedGrayscale: """ Given a prompt string such as "a bagel", tries to identify the object in the provided image and returns a SegmentedGrayscale object in which the brighter pixels indicate where the object is inferred to be. """ if type(image) is str: image = Image.open(image).convert("RGB") image = ImageOps.exif_transpose(image) img = self._scale_and_crop(image) inputs = self.processor( text=[prompt], images=[img], padding=True, return_tensors="pt" ) outputs = self.model(**inputs) heatmap = torch.sigmoid(outputs.logits) return SegmentedGrayscale(image, heatmap) def _scale_and_crop(self, image: Image) -> Image: scaled_image = Image.new("RGB", (CLIPSEG_SIZE, CLIPSEG_SIZE)) if image.width > image.height: # width is constraint scale = CLIPSEG_SIZE / image.width else: scale = CLIPSEG_SIZE / image.height scaled_image.paste( image.resize( (int(scale * image.width), int(scale * image.height)), resample=Image.Resampling.LANCZOS, ), box=(0, 0), ) return scaled_image