"""enum Manage a cache of Stable Diffusion model files for fast switching. They are moved between GPU and CPU as necessary. If CPU memory falls below a preset minimum, the least recently used model will be cleared and loaded from disk when next needed. """ from __future__ import annotations import contextlib import gc import hashlib import os import re import sys import textwrap import time import warnings from enum import Enum, auto from pathlib import Path from shutil import move, rmtree from typing import Any, Optional, Union, Callable, types import safetensors import safetensors.torch import torch import transformers import invokeai.backend.util.logging as logger from diffusers import ( AutoencoderKL, UNet2DConditionModel, SchedulerMixin, logging as dlogging, ) from huggingface_hub import scan_cache_dir from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig from picklescan.scanner import scan_file_path from invokeai.backend.globals import Globals, global_cache_dir from transformers import ( CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor, ) from diffusers.pipelines.stable_diffusion.safety_checker import ( StableDiffusionSafetyChecker, ) from ..stable_diffusion import ( StableDiffusionGeneratorPipeline, ) from ..util import CUDA_DEVICE, ask_user, download_with_resume class SDLegacyType(Enum): V1 = auto() V1_INPAINT = auto() V2 = auto() V2_e = auto() V2_v = auto() UNKNOWN = auto() class SDModelComponent(Enum): vae="vae" text_encoder="text_encoder" tokenizer="tokenizer" unet="unet" scheduler="scheduler" safety_checker="safety_checker" feature_extractor="feature_extractor" DEFAULT_MAX_MODELS = 2 class ModelManager(object): """ Model manager handles loading, caching, importing, deleting, converting, and editing models. """ logger: types.ModuleType = logger def __init__( self, config: OmegaConf | Path, device_type: torch.device = CUDA_DEVICE, precision: str = "float16", max_loaded_models=DEFAULT_MAX_MODELS, sequential_offload=False, embedding_path: Path = None, logger: types.ModuleType = logger, ): """ Initialize with the path to the models.yaml config file or an initialized OmegaConf dictionary. Optional parameters are the torch device type, precision, max_loaded_models, and sequential_offload boolean. Note that the default device type and precision are set up for a CUDA system running at half precision. """ # prevent nasty-looking CLIP log message transformers.logging.set_verbosity_error() if not isinstance(config, DictConfig): config = OmegaConf.load(config) self.config = config self.precision = precision self.device = torch.device(device_type) self.max_loaded_models = max_loaded_models self.models = {} self.stack = [] # this is an LRU FIFO self.current_model = None self.sequential_offload = sequential_offload self.embedding_path = embedding_path self.logger = logger def valid_model(self, model_name: str) -> bool: """ Given a model name, returns True if it is a valid identifier. """ return model_name in self.config def get_model(self, model_name: str = None) -> dict: """Given a model named identified in models.yaml, return a dict containing the model object and some of its key features. If in RAM will load into GPU VRAM. If on disk, will load from there. The dict has the following keys: 'model': The StableDiffusionGeneratorPipeline object 'model_name': The name of the model in models.yaml 'width': The width of images trained by this model 'height': The height of images trained by this model 'hash': A unique hash of this model's files on disk. """ if not model_name: return ( self.get_model(self.current_model) if self.current_model else self.get_model(self.default_model()) ) if not self.valid_model(model_name): self.logger.error( f'"{model_name}" is not a known model name. Please check your models.yaml file' ) return self.current_model if self.current_model != model_name: if model_name not in self.models: # make room for a new one self._make_cache_room() self.offload_model(self.current_model) if model_name in self.models: requested_model = self.models[model_name]["model"] self.logger.info(f"Retrieving model {model_name} from system RAM cache") requested_model.ready() width = self.models[model_name]["width"] height = self.models[model_name]["height"] hash = self.models[model_name]["hash"] else: # we're about to load a new model, so potentially offload the least recently used one requested_model, width, height, hash = self._load_model(model_name) self.models[model_name] = { "model_name": model_name, "model": requested_model, "width": width, "height": height, "hash": hash, } self.current_model = model_name self._push_newest_model(model_name) return { "model_name": model_name, "model": requested_model, "width": width, "height": height, "hash": hash, } def get_model_vae(self, model_name: str=None)->AutoencoderKL: """Given a model name identified in models.yaml, load the model into GPU if necessary and return its assigned VAE as an AutoencoderKL object. If no model name is provided, return the vae from the model currently in the GPU. """ return self._get_sub_model(model_name, SDModelComponent.vae) def get_model_tokenizer(self, model_name: str=None)->CLIPTokenizer: """Given a model name identified in models.yaml, load the model into GPU if necessary and return its assigned CLIPTokenizer. If no model name is provided, return the tokenizer from the model currently in the GPU. """ return self._get_sub_model(model_name, SDModelComponent.tokenizer) def get_model_unet(self, model_name: str=None)->UNet2DConditionModel: """Given a model name identified in models.yaml, load the model into GPU if necessary and return its assigned UNet2DConditionModel. If no model name is provided, return the UNet from the model currently in the GPU. """ return self._get_sub_model(model_name, SDModelComponent.unet) def get_model_text_encoder(self, model_name: str=None)->CLIPTextModel: """Given a model name identified in models.yaml, load the model into GPU if necessary and return its assigned CLIPTextModel. If no model name is provided, return the text encoder from the model currently in the GPU. """ return self._get_sub_model(model_name, SDModelComponent.text_encoder) def get_model_feature_extractor(self, model_name: str=None)->CLIPFeatureExtractor: """Given a model name identified in models.yaml, load the model into GPU if necessary and return its assigned CLIPFeatureExtractor. If no model name is provided, return the text encoder from the model currently in the GPU. """ return self._get_sub_model(model_name, SDModelComponent.feature_extractor) def get_model_scheduler(self, model_name: str=None)->SchedulerMixin: """Given a model name identified in models.yaml, load the model into GPU if necessary and return its assigned scheduler. If no model name is provided, return the text encoder from the model currently in the GPU. """ return self._get_sub_model(model_name, SDModelComponent.scheduler) def _get_sub_model( self, model_name: str=None, model_part: SDModelComponent=SDModelComponent.vae, ) -> Union[ AutoencoderKL, CLIPTokenizer, CLIPFeatureExtractor, UNet2DConditionModel, CLIPTextModel, StableDiffusionSafetyChecker, ]: """Given a model name identified in models.yaml, and the part of the model you wish to retrieve, return that part. Parts are in an Enum class named SDModelComponent, and consist of: SDModelComponent.vae SDModelComponent.text_encoder SDModelComponent.tokenizer SDModelComponent.unet SDModelComponent.scheduler SDModelComponent.safety_checker SDModelComponent.feature_extractor """ model_dict = self.get_model(model_name) model = model_dict["model"] return getattr(model, model_part.value) def default_model(self) -> str | None: """ Returns the name of the default model, or None if none is defined. """ for model_name in self.config: if self.config[model_name].get("default"): return model_name return list(self.config.keys())[0] # first one def set_default_model(self, model_name: str) -> None: """ Set the default model. The change will not take effect until you call model_manager.commit() """ assert model_name in self.model_names(), f"unknown model '{model_name}'" config = self.config for model in config: config[model].pop("default", None) config[model_name]["default"] = True def model_info(self, model_name: str) -> dict: """ Given a model name returns the OmegaConf (dict-like) object describing it. """ if model_name not in self.config: return None return self.config[model_name] def model_names(self) -> list[str]: """ Return a list consisting of all the names of models defined in models.yaml """ return list(self.config.keys()) def is_legacy(self, model_name: str) -> bool: """ Return true if this is a legacy (.ckpt) model """ # if we are converting legacy files automatically, then # there are no legacy ckpts! if Globals.ckpt_convert: return False info = self.model_info(model_name) if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")): return True return False def list_models(self) -> dict: """ Return a dict of models in the format: { model_name1: {'status': ('active'|'cached'|'not loaded'), 'description': description, 'format': ('ckpt'|'diffusers'|'vae'), }, model_name2: { etc } Please use model_manager.models() to get all the model names, model_manager.model_info('model-name') to get the stanza for the model named 'model-name', and model_manager.config to get the full OmegaConf object derived from models.yaml """ models = {} for name in sorted(self.config, key=str.casefold): stanza = self.config[name] # don't include VAEs in listing (legacy style) if "config" in stanza and "/VAE/" in stanza["config"]: continue models[name] = dict() format = stanza.get("format", "ckpt") # Determine Format # Common Attribs description = stanza.get("description", None) if self.current_model == name: status = "active" elif name in self.models: status = "cached" else: status = "not loaded" models[name].update( description=description, format=format, status=status, ) # Checkpoint Config Parse if format == "ckpt": models[name].update( config=str(stanza.get("config", None)), weights=str(stanza.get("weights", None)), vae=str(stanza.get("vae", None)), width=str(stanza.get("width", 512)), height=str(stanza.get("height", 512)), ) # Diffusers Config Parse if vae := stanza.get("vae", None): if isinstance(vae, DictConfig): vae = dict( repo_id=str(vae.get("repo_id", None)), path=str(vae.get("path", None)), subfolder=str(vae.get("subfolder", None)), ) if format == "diffusers": models[name].update( vae=vae, repo_id=str(stanza.get("repo_id", None)), path=str(stanza.get("path", None)), ) return models def print_models(self) -> None: """ Print a table of models, their descriptions, and load status """ models = self.list_models() for name in models: if models[name]["format"] == "vae": continue line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["format"]:10s} {models[name]["description"]}' if models[name]["status"] == "active": line = f"\033[1m{line}\033[0m" print(line) def del_model(self, model_name: str, delete_files: bool = False) -> None: """ Delete the named model. """ omega = self.config if model_name not in omega: self.logger.error(f"Unknown model {model_name}") return # save these for use in deletion later conf = omega[model_name] repo_id = conf.get("repo_id", None) path = self._abs_path(conf.get("path", None)) weights = self._abs_path(conf.get("weights", None)) del omega[model_name] if model_name in self.stack: self.stack.remove(model_name) if delete_files: if weights: self.logger.info(f"Deleting file {weights}") Path(weights).unlink(missing_ok=True) elif path: self.logger.info(f"Deleting directory {path}") rmtree(path, ignore_errors=True) elif repo_id: self.logger.info(f"Deleting the cached model directory for {repo_id}") self._delete_model_from_cache(repo_id) def add_model( self, model_name: str, model_attributes: dict, clobber: bool = False ) -> None: """ Update the named model with a dictionary of attributes. Will fail with an assertion error if the name already exists. Pass clobber=True to overwrite. On a successful update, the config will be changed in memory and the method will return True. Will fail with an assertion error if provided attributes are incorrect or the model name is missing. """ omega = self.config assert "format" in model_attributes, 'missing required field "format"' if model_attributes["format"] == "diffusers": assert ( "description" in model_attributes ), 'required field "description" is missing' assert ( "path" in model_attributes or "repo_id" in model_attributes ), 'model must have either the "path" or "repo_id" fields defined' else: for field in ("description", "weights", "height", "width", "config"): assert field in model_attributes, f"required field {field} is missing" assert ( clobber or model_name not in omega ), f'attempt to overwrite existing model definition "{model_name}"' omega[model_name] = model_attributes if "weights" in omega[model_name]: omega[model_name]["weights"].replace("\\", "/") if clobber: self._invalidate_cached_model(model_name) def _load_model(self, model_name: str): """Load and initialize the model from configuration variables passed at object creation time""" if model_name not in self.config: self.logger.error( f'"{model_name}" is not a known model name. Please check your models.yaml file' ) return mconfig = self.config[model_name] # for usage statistics if self._has_cuda(): torch.cuda.reset_peak_memory_stats() torch.cuda.empty_cache() tic = time.time() # this does the work model_format = mconfig.get("format", "ckpt") if model_format == "ckpt": weights = mconfig.weights self.logger.info(f"Loading {model_name} from {weights}") model, width, height, model_hash = self._load_ckpt_model( model_name, mconfig ) elif model_format == "diffusers": with warnings.catch_warnings(): warnings.simplefilter("ignore") model, width, height, model_hash = self._load_diffusers_model(mconfig) else: raise NotImplementedError( f"Unknown model format {model_name}: {model_format}" ) self._add_embeddings_to_model(model) # usage statistics toc = time.time() self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic)) if self._has_cuda(): self.logger.info( "Max VRAM used to load the model: "+ "%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9) ) self.logger.info( "Current VRAM usage: "+ "%4.2fG" % (torch.cuda.memory_allocated() / 1e9) ) return model, width, height, model_hash def _load_diffusers_model(self, mconfig): name_or_path = self.model_name_or_path(mconfig) using_fp16 = self.precision == "float16" self.logger.info(f"Loading diffusers model from {name_or_path}") if using_fp16: self.logger.debug("Using faster float16 precision") else: self.logger.debug("Using more accurate float32 precision") # TODO: scan weights maybe? pipeline_args: dict[str, Any] = dict( safety_checker=None, local_files_only=not Globals.internet_available ) if "vae" in mconfig and mconfig["vae"] is not None: if vae := self._load_vae(mconfig["vae"]): pipeline_args.update(vae=vae) if not isinstance(name_or_path, Path): pipeline_args.update(cache_dir=global_cache_dir("hub")) if using_fp16: pipeline_args.update(torch_dtype=torch.float16) fp_args_list = [{"revision": "fp16"}, {}] else: fp_args_list = [{}] verbosity = dlogging.get_verbosity() dlogging.set_verbosity_error() pipeline = None for fp_args in fp_args_list: try: pipeline = StableDiffusionGeneratorPipeline.from_pretrained( name_or_path, **pipeline_args, **fp_args, ) except OSError as e: if str(e).startswith("fp16 is not a valid"): pass else: self.logger.error( f"An unexpected error occurred while downloading the model: {e})" ) if pipeline: break dlogging.set_verbosity(verbosity) assert pipeline is not None, OSError(f'"{name_or_path}" could not be loaded') if self.sequential_offload: pipeline.enable_offload_submodels(self.device) else: pipeline.to(self.device) model_hash = self._diffuser_sha256(name_or_path) # square images??? width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor height = width self.logger.debug(f"Default image dimensions = {width} x {height}") return pipeline, width, height, model_hash def _load_ckpt_model(self, model_name, mconfig): config = mconfig.config weights = mconfig.weights vae = mconfig.get("vae") width = mconfig.width height = mconfig.height if not os.path.isabs(config): config = os.path.join(Globals.root, config) if not os.path.isabs(weights): weights = os.path.normpath(os.path.join(Globals.root, weights)) # Convert to diffusers and return a diffusers pipeline self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...") from . import load_pipeline_from_original_stable_diffusion_ckpt try: if self.list_models()[self.current_model]["status"] == "active": self.offload_model(self.current_model) except Exception: pass vae_path = None if vae: vae_path = ( vae if os.path.isabs(vae) else os.path.normpath(os.path.join(Globals.root, vae)) ) if self._has_cuda(): torch.cuda.empty_cache() pipeline = load_pipeline_from_original_stable_diffusion_ckpt( checkpoint_path=weights, original_config_file=config, vae_path=vae_path, return_generator_pipeline=True, precision=torch.float16 if self.precision == "float16" else torch.float32, ) if self.sequential_offload: pipeline.enable_offload_submodels(self.device) else: pipeline.to(self.device) return ( pipeline, width, height, "NOHASH", ) def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path: if isinstance(model_name, DictConfig) or isinstance(model_name, dict): mconfig = model_name elif model_name in self.config: mconfig = self.config[model_name] else: raise ValueError( f'"{model_name}" is not a known model name. Please check your models.yaml file' ) if "path" in mconfig and mconfig["path"] is not None: path = Path(mconfig["path"]) if not path.is_absolute(): path = Path(Globals.root, path).resolve() return path elif "repo_id" in mconfig: return mconfig["repo_id"] else: raise ValueError("Model config must specify either repo_id or path.") def offload_model(self, model_name: str) -> None: """ Offload the indicated model to CPU. Will call _make_cache_room() to free space if needed. """ if model_name not in self.models: return self.logger.info(f"Offloading {model_name} to CPU") model = self.models[model_name]["model"] model.offload_all() self.current_model = None gc.collect() if self._has_cuda(): torch.cuda.empty_cache() @classmethod def scan_model(self, model_name, checkpoint): """ Apply picklescanner to the indicated checkpoint and issue a warning and option to exit if an infected file is identified. """ # scan model self.logger.debug(f"Scanning Model: {model_name}") scan_result = scan_file_path(checkpoint) if scan_result.infected_files != 0: if scan_result.infected_files == 1: self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}") self.logger.critical("The model you are trying to load seems to be infected.") self.logger.critical("For your safety, InvokeAI will not load this model.") self.logger.critical("Please use checkpoints from trusted sources.") self.logger.critical("Exiting InvokeAI") sys.exit() else: self.logger.warning("InvokeAI was unable to scan the model you are using.") model_safe_check_fail = ask_user( "Do you want to to continue loading the model?", ["y", "n"] ) if model_safe_check_fail.lower() != "y": self.logger.critical("Exiting InvokeAI") sys.exit() else: self.logger.debug("Model scanned ok") def import_diffuser_model( self, repo_or_path: Union[str, Path], model_name: str = None, description: str = None, vae: dict = None, commit_to_conf: Path = None, ) -> bool: """ Attempts to install the indicated diffuser model and returns True if successful. "repo_or_path" can be either a repo-id or a path-like object corresponding to the top of a downloaded diffusers directory. You can optionally provide a model name and/or description. If not provided, then these will be derived from the repo name. If you provide a commit_to_conf path to the configuration file, then the new entry will be committed to the models.yaml file. """ model_name = model_name or Path(repo_or_path).stem model_description = description or f"Imported diffusers model {model_name}" new_config = dict( description=model_description, vae=vae, format="diffusers", ) if isinstance(repo_or_path, Path) and repo_or_path.exists(): new_config.update(path=str(repo_or_path)) else: new_config.update(repo_id=repo_or_path) self.add_model(model_name, new_config, True) if commit_to_conf: self.commit(commit_to_conf) return model_name @classmethod def probe_model_type(self, checkpoint: dict) -> SDLegacyType: """ Given a pickle or safetensors model object, probes contents of the object and returns an SDLegacyType indicating its format. Valid return values include: SDLegacyType.V1 SDLegacyType.V1_INPAINT SDLegacyType.V2 (V2 prediction type unknown) SDLegacyType.V2_e (V2 using 'epsilon' prediction type) SDLegacyType.V2_v (V2 using 'v_prediction' prediction type) SDLegacyType.UNKNOWN """ global_step = checkpoint.get("global_step") state_dict = checkpoint.get("state_dict") or checkpoint try: key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if global_step == 220000: return SDLegacyType.V2_e elif global_step == 110000: return SDLegacyType.V2_v else: return SDLegacyType.V2 # otherwise we assume a V1 file in_channels = state_dict[ "model.diffusion_model.input_blocks.0.0.weight" ].shape[1] if in_channels == 9: return SDLegacyType.V1_INPAINT elif in_channels == 4: return SDLegacyType.V1 else: return SDLegacyType.UNKNOWN except KeyError: return SDLegacyType.UNKNOWN def heuristic_import( self, path_url_or_repo: str, model_name: str = None, description: str = None, model_config_file: Path = None, commit_to_conf: Path = None, config_file_callback: Callable[[Path], Path] = None, ) -> str: """Accept a string which could be: - a HF diffusers repo_id - a URL pointing to a legacy .ckpt or .safetensors file - a local path pointing to a legacy .ckpt or .safetensors file - a local directory containing .ckpt and .safetensors files - a local directory containing a diffusers model After determining the nature of the model and downloading it (if necessary), the file is probed to determine the correct configuration file (if needed) and it is imported. The model_name and/or description can be provided. If not, they will be generated automatically. If commit_to_conf is provided, the newly loaded model will be written to the `models.yaml` file at the indicated path. Otherwise, the changes will only remain in memory. The routine will do its best to figure out the config file needed to convert legacy checkpoint file, but if it can't it will call the config_file_callback routine, if provided. The callback accepts a single argument, the Path to the checkpoint file, and returns a Path to the config file to use. The (potentially derived) name of the model is returned on success, or None on failure. When multiple models are added from a directory, only the last imported one is returned. """ model_path: Path = None thing = path_url_or_repo # to save typing self.logger.info(f"Probing {thing} for import") if thing.startswith(("http:", "https:", "ftp:")): self.logger.info(f"{thing} appears to be a URL") model_path = self._resolve_path( thing, "models/ldm/stable-diffusion-v1" ) # _resolve_path does a download if needed elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")): if Path(thing).stem in ["model", "diffusion_pytorch_model"]: self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import") return else: self.logger.debug(f"{thing} appears to be a checkpoint file on disk") model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1") elif Path(thing).is_dir() and Path(thing, "model_index.json").exists(): self.logger.debug(f"{thing} appears to be a diffusers file on disk") model_name = self.import_diffuser_model( thing, vae=dict(repo_id="stabilityai/sd-vae-ft-mse"), model_name=model_name, description=description, commit_to_conf=commit_to_conf, ) elif Path(thing).is_dir(): if (Path(thing) / "model_index.json").exists(): self.logger.debug(f"{thing} appears to be a diffusers model.") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) else: self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import") for m in list(Path(thing).rglob("*.ckpt")) + list( Path(thing).rglob("*.safetensors") ): if model_name := self.heuristic_import( str(m), commit_to_conf=commit_to_conf ): self.logger.info(f"{model_name} successfully imported") return model_name elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing): self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name]) return model_name else: self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id") # Model_path is set in the event of a legacy checkpoint file. # If not set, we're all done if not model_path: return if model_path.stem in self.config: # already imported self.logger.debug("Already imported. Skipping") return model_path.stem # another round of heuristics to guess the correct config file. checkpoint = None if model_path.suffix in [".ckpt", ".pt"]: self.scan_model(model_path, model_path) checkpoint = torch.load(model_path) else: checkpoint = safetensors.torch.load_file(model_path) # additional probing needed if no config file provided if model_config_file is None: # look for a like-named .yaml file in same directory if model_path.with_suffix(".yaml").exists(): model_config_file = model_path.with_suffix(".yaml") self.logger.debug(f"Using config file {model_config_file.name}") else: model_type = self.probe_model_type(checkpoint) if model_type == SDLegacyType.V1: self.logger.debug("SD-v1 model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v1-inference.yaml" ) elif model_type == SDLegacyType.V1_INPAINT: self.logger.debug("SD-v1 inpainting model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml", ) elif model_type == SDLegacyType.V2_v: self.logger.debug("SD-v2-v model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v2-inference-v.yaml" ) elif model_type == SDLegacyType.V2_e: self.logger.debug("SD-v2-e model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v2-inference.yaml" ) elif model_type == SDLegacyType.V2: self.logger.warning( f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path." ) return else: self.logger.warning( f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path." ) return if not model_config_file and config_file_callback: model_config_file = config_file_callback(model_path) # despite our best efforts, we could not find a model config file, so give up if not model_config_file: return # look for a custom vae, a like-named file ending with .vae in the same directory vae_path = None for suffix in ["pt", "ckpt", "safetensors"]: if (model_path.with_suffix(f".vae.{suffix}")).exists(): vae_path = model_path.with_suffix(f".vae.{suffix}") self.logger.debug(f"Using VAE file {vae_path.name}") vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse") diffuser_path = Path( Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem ) model_name = self.convert_and_import( model_path, diffusers_path=diffuser_path, vae=vae, vae_path=str(vae_path), model_name=model_name, model_description=description, original_config_file=model_config_file, commit_to_conf=commit_to_conf, scan_needed=False, ) return model_name def convert_and_import( self, ckpt_path: Path, diffusers_path: Path, model_name=None, model_description=None, vae: dict = None, vae_path: Path = None, original_config_file: Path = None, commit_to_conf: Path = None, scan_needed: bool = True, ) -> str: """ Convert a legacy ckpt weights file to diffuser model and import into models.yaml. """ ckpt_path = self._resolve_path(ckpt_path, "models/ldm/stable-diffusion-v1") if original_config_file: original_config_file = self._resolve_path( original_config_file, "configs/stable-diffusion" ) new_config = None from . import convert_ckpt_to_diffusers if diffusers_path.exists(): self.logger.error( f"The path {str(diffusers_path)} already exists. Please move or remove it and try again." ) return model_name = model_name or diffusers_path.name model_description = model_description or f"Converted version of {model_name}" self.logger.debug(f"Converting {model_name} to diffusers (30-60s)") try: # By passing the specified VAE to the conversion function, the autoencoder # will be built into the model rather than tacked on afterward via the config file vae_model = None if vae: vae_model = self._load_vae(vae) vae_path = None convert_ckpt_to_diffusers( ckpt_path, diffusers_path, extract_ema=True, original_config_file=original_config_file, vae=vae_model, vae_path=vae_path, scan_needed=scan_needed, ) self.logger.debug( f"Success. Converted model is now located at {str(diffusers_path)}" ) self.logger.debug(f"Writing new config file entry for {model_name}") new_config = dict( path=str(diffusers_path), description=model_description, format="diffusers", ) if model_name in self.config: self.del_model(model_name) self.add_model(model_name, new_config, True) if commit_to_conf: self.commit(commit_to_conf) self.logger.debug("Conversion succeeded") except Exception as e: self.logger.warning(f"Conversion failed: {str(e)}") self.logger.warning( "If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)" ) return model_name def search_models(self, search_folder): self.logger.info(f"Finding Models In: {search_folder}") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_safetensors = Path(search_folder).glob("**/*.safetensors") ckpt_files = [x for x in models_folder_ckpt if x.is_file()] safetensor_files = [x for x in models_folder_safetensors if x.is_file()] files = ckpt_files + safetensor_files found_models = [] for file in files: location = str(file.resolve()).replace("\\", "/") if ( "model.safetensors" not in location and "diffusion_pytorch_model.safetensors" not in location ): found_models.append({"name": file.stem, "location": location}) return search_folder, found_models def _make_cache_room(self) -> None: num_loaded_models = len(self.models) if num_loaded_models >= self.max_loaded_models: least_recent_model = self._pop_oldest_model() self.logger.info( f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}" ) if least_recent_model is not None: del self.models[least_recent_model] gc.collect() def print_vram_usage(self) -> None: if self._has_cuda: self.logger.info( "Current VRAM usage:"+ "%4.2fG" % (torch.cuda.memory_allocated() / 1e9), ) def commit(self, config_file_path: str) -> None: """ Write current configuration out to the indicated file. """ yaml_str = OmegaConf.to_yaml(self.config) if not os.path.isabs(config_file_path): config_file_path = os.path.normpath( os.path.join(Globals.root, config_file_path) ) tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp") with open(tmpfile, "w", encoding="utf-8") as outfile: outfile.write(self.preamble()) outfile.write(yaml_str) os.replace(tmpfile, config_file_path) def preamble(self) -> str: """ Returns the preamble for the config file. """ return textwrap.dedent( """\ # This file describes the alternative machine learning models # available to InvokeAI script. # # To add a new model, follow the examples below. Each # model requires a model config file, a weights file, # and the width and height of the images it # was trained on. """ ) @classmethod def migrate_models(cls): """ Migrate the ~/invokeai/models directory from the legacy format used through 2.2.5 to the 2.3.0 "diffusers" version. This should be a one-time operation, called at script startup time. """ # Three transformer models to check: bert, clip and safety checker, and # the diffusers as well models_dir = Path(Globals.root, "models") legacy_locations = [ Path( models_dir, "CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker", ), Path(models_dir, "bert-base-uncased/models--bert-base-uncased"), Path( models_dir, "openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14", ), ] legacy_locations.extend(list(global_cache_dir("diffusers").glob("*"))) legacy_layout = False for model in legacy_locations: legacy_layout = legacy_layout or model.exists() if not legacy_layout: return print( """ >> ALERT: >> The location of your previously-installed diffusers models needs to move from >> invokeai/models/diffusers to invokeai/models/hub due to a change introduced by >> diffusers version 0.14. InvokeAI will now move all models from the "diffusers" directory >> into "hub" and then remove the diffusers directory. This is a quick, safe, one-time >> operation. However if you have customized either of these directories and need to >> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready. >> Otherwise press to continue.""" ) input("continue> ") # transformer files get moved into the hub directory if cls._is_huggingface_hub_directory_present(): hub = global_cache_dir("hub") else: hub = models_dir / "hub" os.makedirs(hub, exist_ok=True) for model in legacy_locations: source = models_dir / model dest = hub / model.stem if dest.exists() and not source.exists(): continue cls.logger.info(f"{source} => {dest}") if source.exists(): if dest.is_symlink(): logger.warning(f"Found symlink at {dest.name}. Not migrating.") elif dest.exists(): if source.is_dir(): rmtree(source) else: source.unlink() else: move(source, dest) # now clean up by removing any empty directories empty = [ root for root, dirs, files, in os.walk(models_dir) if not len(dirs) and not len(files) ] for d in empty: os.rmdir(d) cls.logger.info("Migration is done. Continuing...") def _resolve_path( self, source: Union[str, Path], dest_directory: str ) -> Optional[Path]: resolved_path = None if str(source).startswith(("http:", "https:", "ftp:")): dest_directory = Path(dest_directory) if not dest_directory.is_absolute(): dest_directory = Globals.root / dest_directory dest_directory.mkdir(parents=True, exist_ok=True) resolved_path = download_with_resume(str(source), dest_directory) else: if not os.path.isabs(source): source = os.path.join(Globals.root, source) resolved_path = Path(source) return resolved_path def _invalidate_cached_model(self, model_name: str) -> None: self.offload_model(model_name) if model_name in self.stack: self.stack.remove(model_name) self.models.pop(model_name, None) def _pop_oldest_model(self): """ Remove the first element of the FIFO, which ought to be the least recently accessed model. Do not pop the last one, because it is in active use! """ return self.stack.pop(0) def _push_newest_model(self, model_name: str) -> None: """ Maintain a simple FIFO. First element is always the least recent, and last element is always the most recent. """ with contextlib.suppress(ValueError): self.stack.remove(model_name) self.stack.append(model_name) def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline): if self.embedding_path is not None: self.logger.info(f"Loading embeddings from {self.embedding_path}") for root, _, files in os.walk(self.embedding_path): for name in files: ti_path = os.path.join(root, name) model.textual_inversion_manager.load_textual_inversion( ti_path, defer_injecting_tokens=True ) self.logger.info( f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}' ) def _has_cuda(self) -> bool: return self.device.type == "cuda" def _diffuser_sha256( self, name_or_path: Union[str, Path], chunksize=16777216 ) -> Union[str, bytes]: path = None if isinstance(name_or_path, Path): path = name_or_path else: owner, repo = name_or_path.split("/") path = Path(global_cache_dir("hub") / f"models--{owner}--{repo}") if not path.exists(): return None hashpath = path / "checksum.sha256" if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime: with open(hashpath) as f: hash = f.read() return hash self.logger.debug("Calculating sha256 hash of model files") tic = time.time() sha = hashlib.sha256() count = 0 for root, dirs, files in os.walk(path, followlinks=False): for name in files: count += 1 with open(os.path.join(root, name), "rb") as f: while chunk := f.read(chunksize): sha.update(chunk) hash = sha.hexdigest() toc = time.time() self.logger.debug(f"sha256 = {hash} ({count} files hashed in {toc - tic:4.2f}s)") with open(hashpath, "w") as f: f.write(hash) return hash def _cached_sha256(self, path, data) -> Union[str, bytes]: dirname = os.path.dirname(path) basename = os.path.basename(path) base, _ = os.path.splitext(basename) hashpath = os.path.join(dirname, base + ".sha256") if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime( hashpath ): with open(hashpath) as f: hash = f.read() return hash self.logger.debug("Calculating sha256 hash of weights file") tic = time.time() sha = hashlib.sha256() sha.update(data) hash = sha.hexdigest() toc = time.time() self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic)) with open(hashpath, "w") as f: f.write(hash) return hash def _load_vae(self, vae_config) -> AutoencoderKL: vae_args = {} try: name_or_path = self.model_name_or_path(vae_config) except Exception: return None if name_or_path is None: return None using_fp16 = self.precision == "float16" vae_args.update( cache_dir=global_cache_dir("hub"), local_files_only=not Globals.internet_available, ) self.logger.debug(f"Loading diffusers VAE from {name_or_path}") if using_fp16: vae_args.update(torch_dtype=torch.float16) fp_args_list = [{"revision": "fp16"}, {}] else: self.logger.debug("Using more accurate float32 precision") fp_args_list = [{}] vae = None deferred_error = None # A VAE may be in a subfolder of a model's repository. if "subfolder" in vae_config: vae_args["subfolder"] = vae_config["subfolder"] for fp_args in fp_args_list: # At some point we might need to be able to use different classes here? But for now I think # all Stable Diffusion VAE are AutoencoderKL. try: vae = AutoencoderKL.from_pretrained(name_or_path, **vae_args, **fp_args) except OSError as e: if str(e).startswith("fp16 is not a valid"): pass else: deferred_error = e if vae: break if not vae and deferred_error: self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}") return vae @classmethod def _delete_model_from_cache(cls,repo_id): cache_info = scan_cache_dir(global_cache_dir("hub")) # I'm sure there is a way to do this with comprehensions # but the code quickly became incomprehensible! hashes_to_delete = set() for repo in cache_info.repos: if repo.repo_id == repo_id: for revision in repo.revisions: hashes_to_delete.add(revision.commit_hash) strategy = cache_info.delete_revisions(*hashes_to_delete) cls.logger.warning( f"Deletion of this model is expected to free {strategy.expected_freed_size_str}" ) strategy.execute() @staticmethod def _abs_path(path: str | Path) -> Path: if path is None or Path(path).is_absolute(): return path return Path(Globals.root, path).resolve() @staticmethod def _is_huggingface_hub_directory_present() -> bool: return ( os.getenv("HF_HOME") is not None or os.getenv("XDG_CACHE_HOME") is not None )