# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) from typing import Literal, Optional, Union import diffusers import einops import torch from diffusers import DiffusionPipeline from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.image_processor import VaeImageProcessor from pydantic import BaseModel, Field from invokeai.app.util.misc import SEED_MAX, get_random_seed from invokeai.app.util.step_callback import stable_diffusion_step_callback from ...backend.image_util.seamless import configure_model_padding from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion.diffusers_pipeline import ( ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor) from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \ PostprocessingSettings from ...backend.util.devices import choose_torch_device, torch_dtype from ..services.image_storage import ImageType from .baseinvocation import (BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext) from .compel import ConditioningField from .image import ImageField, ImageOutput, build_image_output from .model import ModelInfo, UNetField, VaeField from ...backend.model_management import SDModelType class LatentsField(BaseModel): """A latents field used for passing latents between invocations""" latents_name: Optional[str] = Field(default=None, description="The name of the latents") class Config: schema_extra = {"required": ["latents_name"]} class LatentsOutput(BaseInvocationOutput): """Base class for invocations that output latents""" #fmt: off type: Literal["latent_output"] = "latent_output" latents: LatentsField = Field(default=None, description="The output latents") #fmt: on class NoiseOutput(BaseInvocationOutput): """Invocation noise output""" #fmt: off type: Literal["noise_output"] = "noise_output" noise: LatentsField = Field(default=None, description="The output noise") #fmt: on # TODO: this seems like a hack scheduler_map = dict( ddim=diffusers.DDIMScheduler, dpmpp_2=diffusers.DPMSolverMultistepScheduler, k_dpm_2=diffusers.KDPM2DiscreteScheduler, k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler, k_dpmpp_2=diffusers.DPMSolverMultistepScheduler, k_euler=diffusers.EulerDiscreteScheduler, k_euler_a=diffusers.EulerAncestralDiscreteScheduler, k_heun=diffusers.HeunDiscreteScheduler, k_lms=diffusers.LMSDiscreteScheduler, plms=diffusers.PNDMScheduler, ) SAMPLER_NAME_VALUES = Literal[ tuple(list(scheduler_map.keys())) ] def get_scheduler( context: InvocationContext, scheduler_info: ModelInfo, scheduler_name: str, ) -> Scheduler: orig_scheduler_info = context.services.model_manager.get_model(**scheduler_info.dict()) with orig_scheduler_info as orig_scheduler: scheduler_config = orig_scheduler.config scheduler_class = scheduler_map.get(scheduler_name,'ddim') scheduler = scheduler_class.from_config(scheduler_config) # hack copied over from generate.py if not hasattr(scheduler, 'uses_inpainting_model'): scheduler.uses_inpainting_model = lambda: False return scheduler def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8): # limit noise to only the diffusion image channels, not the mask channels input_channels = min(latent_channels, 4) use_device = "cpu" if (use_mps_noise or device.type == "mps") else device generator = torch.Generator(device=use_device).manual_seed(seed) x = torch.randn( [ 1, input_channels, height // downsampling_factor, width // downsampling_factor, ], dtype=torch_dtype(device), device=use_device, generator=generator, ).to(device) # if self.perlin > 0.0: # perlin_noise = self.get_perlin_noise( # width // self.downsampling_factor, height // self.downsampling_factor # ) # x = (1 - self.perlin) * x + self.perlin * perlin_noise return x class NoiseInvocation(BaseInvocation): """Generates latent noise.""" type: Literal["noise"] = "noise" # Inputs seed: int = Field(ge=0, le=SEED_MAX, description="The seed to use", default_factory=get_random_seed) width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", ) height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", ) # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "noise"], }, } def invoke(self, context: InvocationContext) -> NoiseOutput: device = torch.device(choose_torch_device()) noise = get_noise(self.width, self.height, device, self.seed) name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.set(name, noise) return NoiseOutput( noise=LatentsField(latents_name=name) ) # Text to image class TextToLatentsInvocation(BaseInvocation): """Generates latents from conditionings.""" type: Literal["t2l"] = "t2l" # Inputs # fmt: off positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation") negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation") noise: Optional[LatentsField] = Field(description="The noise to use") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") unet: UNetField = Field(default=None, description="UNet submodel") # fmt: on # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], }, } # TODO: pass this an emitter method or something? or a session for dispatching? def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.dict(), source_node_id=source_node_id, ) def get_conditioning_data(self, context: InvocationContext, scheduler) -> ConditioningData: c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name) uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name) conditioning_data = ConditioningData( uc, c, self.cfg_scale, extra_conditioning_info, postprocessing_settings=PostprocessingSettings( threshold=0.0,#threshold, warmup=0.2,#warmup, h_symmetry_time_pct=None,#h_symmetry_time_pct, v_symmetry_time_pct=None#v_symmetry_time_pct, ), ).add_scheduler_args_if_applicable(scheduler, eta=None)#ddim_eta) return conditioning_data def create_pipeline(self, unet, scheduler) -> StableDiffusionGeneratorPipeline: configure_model_padding( unet, self.seamless, self.seamless_axes, ) class FakeVae: class FakeVaeConfig: def __init__(self): self.block_out_channels = [0] def __init__(self): self.config = FakeVae.FakeVaeConfig() return StableDiffusionGeneratorPipeline( vae=FakeVae(), # TODO: oh... text_encoder=None, tokenizer=None, unet=unet, scheduler=scheduler, safety_checker=None, feature_extractor=None, requires_safety_checker=False, precision="float16" if unet.dtype == torch.float16 else "float32", #precision="float16", # TODO: ) def invoke(self, context: InvocationContext) -> LatentsOutput: noise = context.services.latents.get(self.noise.latents_name) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] def step_callback(state: PipelineIntermediateState): self.dispatch_progress(context, source_node_id, state) unet_info = context.services.model_manager.get_model(**self.unet.unet.dict()) with unet_info as unet: scheduler = get_scheduler( context=context, scheduler_info=self.unet.scheduler, scheduler_name=self.scheduler, ) pipeline = self.create_pipeline(unet, scheduler) conditioning_data = self.get_conditioning_data(context, scheduler) # TODO: Verify the noise is the right size result_latents, result_attention_map_saver = pipeline.latents_from_embeddings( latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)), noise=noise, num_inference_steps=self.steps, conditioning_data=conditioning_data, callback=step_callback ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.set(name, result_latents) return LatentsOutput( latents=LatentsField(latents_name=name) ) class LatentsToLatentsInvocation(TextToLatentsInvocation): """Generates latents using latents as base image.""" type: Literal["l2l"] = "l2l" # Inputs latents: Optional[LatentsField] = Field(description="The latents to use as a base image") strength: float = Field(default=0.5, description="The strength of the latents to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents"], }, } def invoke(self, context: InvocationContext) -> LatentsOutput: noise = context.services.latents.get(self.noise.latents_name) latent = context.services.latents.get(self.latents.latents_name) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] def step_callback(state: PipelineIntermediateState): self.dispatch_progress(context, source_node_id, state) #unet_info = context.services.model_manager.get_model(**self.unet.unet.dict()) unet_info = context.services.model_manager.get_model( **self.unet.unet.dict(), ) with unet_info as unet: scheduler = get_scheduler( context=context, scheduler_info=self.unet.scheduler, scheduler_name=self.scheduler, ) pipeline = self.create_pipeline(unet, scheduler) conditioning_data = self.get_conditioning_data(context, scheduler) # TODO: Verify the noise is the right size initial_latents = latent if self.strength < 1.0 else torch.zeros_like( latent, device=unet.device, dtype=latent.dtype ) timesteps, _ = pipeline.get_img2img_timesteps( self.steps, self.strength, device=unet.device, ) result_latents, result_attention_map_saver = pipeline.latents_from_embeddings( latents=initial_latents, timesteps=timesteps, noise=noise, num_inference_steps=self.steps, conditioning_data=conditioning_data, callback=step_callback ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.set(name, result_latents) return LatentsOutput( latents=LatentsField(latents_name=name) ) # Latent to image class LatentsToImageInvocation(BaseInvocation): """Generates an image from latents.""" type: Literal["l2i"] = "l2i" # Inputs latents: Optional[LatentsField] = Field(description="The latents to generate an image from") vae: VaeField = Field(default=None, description="Vae submodel") tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], }, } @torch.no_grad() def invoke(self, context: InvocationContext) -> ImageOutput: latents = context.services.latents.get(self.latents.latents_name) #vae_info = context.services.model_manager.get_model(**self.vae.vae.dict()) vae_info = context.services.model_manager.get_model( **self.vae.vae.dict(), ) with vae_info as vae: if self.tiled: vae.enable_tiling() else: vae.disable_tiling() # clear memory as vae decode can request a lot torch.cuda.empty_cache() with torch.inference_mode(): # copied from diffusers pipeline latents = latents / vae.config.scaling_factor image = vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # denormalize # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 np_image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = VaeImageProcessor.numpy_to_pil(np_image)[0] image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) torch.cuda.empty_cache() context.services.images.save(image_type, image_name, image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=image ) LATENTS_INTERPOLATION_MODE = Literal[ "nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact" ] class ResizeLatentsInvocation(BaseInvocation): """Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.""" type: Literal["lresize"] = "lresize" # Inputs latents: Optional[LatentsField] = Field(description="The latents to resize") width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)") height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)") mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode") antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)") def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) resized_latents = torch.nn.functional.interpolate( latents, size=(self.height // 8, self.width // 8), mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.set(name, resized_latents) return LatentsOutput(latents=LatentsField(latents_name=name)) class ScaleLatentsInvocation(BaseInvocation): """Scales latents by a given factor.""" type: Literal["lscale"] = "lscale" # Inputs latents: Optional[LatentsField] = Field(description="The latents to scale") scale_factor: float = Field(gt=0, description="The factor by which to scale the latents") mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode") antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)") def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) # resizing resized_latents = torch.nn.functional.interpolate( latents, scale_factor=self.scale_factor, mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.set(name, resized_latents) return LatentsOutput(latents=LatentsField(latents_name=name)) class ImageToLatentsInvocation(BaseInvocation): """Encodes an image into latents.""" type: Literal["i2l"] = "i2l" # Inputs image: Union[ImageField, None] = Field(description="The image to encode") vae: VaeField = Field(default=None, description="Vae submodel") tiled: bool = Field(default=False, description="Encode latents by overlaping tiles(less memory consumption)") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], }, } @torch.no_grad() def invoke(self, context: InvocationContext) -> LatentsOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) #vae_info = context.services.model_manager.get_model(**self.vae.vae.dict()) vae_info = context.services.model_manager.get_model( **self.vae.vae.dict(), ) image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB")) if image_tensor.dim() == 3: image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w") with vae_info as vae: if self.tiled: vae.enable_tiling() else: vae.disable_tiling() # non_noised_latents_from_image image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype) with torch.inference_mode(): image_tensor_dist = vae.encode(image_tensor).latent_dist latents = image_tensor_dist.sample().to( dtype=vae.dtype ) # FIXME: uses torch.randn. make reproducible! latents = 0.18215 * latents name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.set(name, latents) return LatentsOutput(latents=LatentsField(latents_name=name))