from inspect import isfunction import math from typing import Callable import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from ldm.modules.diffusionmodules.util import checkpoint import psutil def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x+h_ class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.mem_total_gb = psutil.virtual_memory().total // (1 << 30) self.attention_slice_wrangler = None def set_attention_slice_wrangler(self, wrangler:Callable[[nn.Module, torch.Tensor, torch.Tensor, int, int, int], torch.Tensor]): ''' Set custom attention calculator to be called when attention is calculated :param wrangler: Callback, with args (self, attention_scores, suggested_attention_slice, dim, offset, slice_size), which returns either the suggested_attention_slice or an adjusted equivalent. self is the current CrossAttention module for which the callback is being invoked. attention_scores are the scores for attention suggested_attention_slice is a softmax(dim=-1) over attention_scores dim is -1 if the call is non-sliced, or 0 or 1 for dimension-0 or dimension-1 slicing. If dim is >= 0, offset and slice_size specify the slice start and length. Pass None to use the default attention calculation. :return: ''' self.attention_slice_wrangler = wrangler def einsum_lowest_level(self, q, k, v, dim, offset, slice_size): # calculate attention scores attention_scores = einsum('b i d, b j d -> b i j', q, k) # calculate attenion slice by taking the best scores for each latent pixel default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype) if self.attention_slice_wrangler is not None: attention_slice = self.attention_slice_wrangler(self, attention_scores, default_attention_slice, dim, offset, slice_size) else: attention_slice = default_attention_slice return einsum('b i j, b j d -> b i d', attention_slice, v) def einsum_op_slice_dim0(self, q, k, v, slice_size): r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) for i in range(0, q.shape[0], slice_size): end = i + slice_size r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size) return r def einsum_op_slice_dim1(self, q, k, v, slice_size): r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) for i in range(0, q.shape[1], slice_size): end = i + slice_size r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size) return r def einsum_op_mps_v1(self, q, k, v): if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096 return self.einsum_lowest_level(q, k, v, None, None, None) else: slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) return self.einsum_op_slice_dim1(q, k, v, slice_size) def einsum_op_mps_v2(self, q, k, v): if self.mem_total_gb > 8 and q.shape[1] <= 4096: return self.einsum_lowest_level(q, k, v, None, None, None) else: return self.einsum_op_slice_dim0(q, k, v, 1) def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb): size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) if size_mb <= max_tensor_mb: return self.einsum_lowest_level(q, k, v, None, None, None) div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length() if div <= q.shape[0]: print("warning: untested call to einsum_op_slice_dim0") return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div) print("warning: untested call to einsum_op_slice_dim1") return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1)) def einsum_op_cuda(self, q, k, v): stats = torch.cuda.memory_stats(q.device) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch # Divide factor of safety as there's copying and fragmentation return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) def get_attention_mem_efficient(self, q, k, v): if q.device.type == 'cuda': return self.einsum_op_cuda(q, k, v) if q.device.type == 'mps': if self.mem_total_gb >= 32: return self.einsum_op_mps_v1(q, k, v) return self.einsum_op_mps_v2(q, k, v) # Smaller slices are faster due to L2/L3/SLC caches. # Tested on i7 with 8MB L3 cache. return self.einsum_op_tensor_mem(q, k, v, 32) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) * self.scale v = self.to_v(context) del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) r = self.get_attention_mem_efficient(q, k, v) hidden_states = rearrange(r, '(b h) n d -> b n (h d)', h=h) return self.to_out(hidden_states) class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): super().__init__() self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None): x = x.contiguous() if x.device.type == 'mps' else x x += self.attn1(self.norm1(x.clone())) x += self.attn2(self.norm2(x.clone()), context=context) x += self.ff(self.norm3(x.clone())) return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c') for block in self.transformer_blocks: x = block(x, context=context) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) x = self.proj_out(x) return x + x_in