"""This module manages the InvokeAI `models.yaml` file, mapping symbolic diffusers model names to the paths and repo_ids used by the underlying `from_pretrained()` call. For fetching models, use manager.get_model('symbolic name'). This will return a SDModelInfo object that contains the following attributes: * context -- a context manager Generator that loads and locks the model into GPU VRAM and returns the model for use. See below for usage. * name -- symbolic name of the model * hash -- unique hash for the model * location -- path or repo_id of the model * revision -- revision of the model if coming from a repo id, e.g. 'fp16' * precision -- torch precision of the model * status -- a ModelStatus enum corresponding to one of 'not_loaded', 'in_ram', 'in_vram' or 'active' Typical usage: from invokeai.backend import ModelManager manager = ModelManager(config_path='./configs/models.yaml',max_models=4) model_info = manager.get_model('stable-diffusion-1.5') with model_info.context as my_model: my_model.latents_from_embeddings(...) The manager uses the underlying ModelCache class to keep frequently-used models in RAM and move them into GPU as needed for generation operations. The ModelCache object can be accessed using the manager's "cache" attribute. Other methods provided by ModelManager support importing, editing, converting and deleting models. The general format of a models.yaml section is: name-of-model: format: diffusers|ckpt|vae|text_encoder|tokenizer... repo_id: owner/repo path: /path/to/local/file/or/directory subfolder: subfolder-name submodel: vae|text_encoder|tokenizer... The format is one of {diffusers, ckpt, vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor}, and correspond to items in the SDModelType enum defined in model_cache.py One, but not both, of repo_id and path are provided. repo_id is the HuggingFace repository ID of the model, and path points to the file or directory on disk. If subfolder is provided, then the model exists in a subdirectory of the main model. These are usually named after the model type, such as "unet". Finally, if submodel is provided, then the path/repo_id is treated as a diffusers model, the whole thing is ready into memory, and then the requested part (e.g. "unet") is retrieved. This summarizes the three ways of getting a non-diffuser model: clip-test-1: format: text_encoder repo_id: openai/clip-vit-large-patch14 description: Returns standalone CLIPTextModel clip-test-2: format: diffusers repo_id: stabilityai/stable-diffusion-2 submodel: text_encoder description: Returns the text_encoder part of whole diffusers model (whole thing in RAM) clip-test-3: format: text_encoder repo_id: stabilityai/stable-diffusion-2 subfolder: text_encoder description: Returns the text_encoder in the subfolder of the diffusers model (just the encoder in RAM) clip-token: format: tokenizer repo_id: openai/clip-vit-large-patch14 description: Returns standalone tokenizer """ from __future__ import annotations import os import re import textwrap from dataclasses import dataclass from enum import Enum, auto from pathlib import Path from shutil import rmtree from typing import Union, Callable, types import safetensors import safetensors.torch import torch import invokeai.backend.util.logging as logger from huggingface_hub import scan_cache_dir from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig from invokeai.backend.globals import Globals, global_cache_dir, global_resolve_path from .model_cache import ModelClass, ModelCache, ModelLocker, SDModelType, ModelStatus, LegacyInfo from ..util import CUDA_DEVICE # wanted to use pydantic here, but Generator objects not supported @dataclass class SDModelInfo(): context: ModelLocker name: str hash: str location: Union[Path,str] precision: torch.dtype subfolder: Path = None revision: str = None _cache: ModelCache = None @property def status(self)->ModelStatus: '''Return load status of this model as a model_cache.ModelStatus enum''' if not self._cache: return ModelStatus.unknown return self._cache.status( self.location, revision = self.revision, subfolder = self.subfolder ) class InvalidModelError(Exception): "Raised when an invalid model is requested" pass class SDLegacyType(Enum): V1 = auto() V1_INPAINT = auto() V2 = auto() V2_e = auto() V2_v = auto() UNKNOWN = auto() DEFAULT_MAX_MODELS = 2 class ModelManager(object): """ High-level interface to model management. """ logger: types.ModuleType = logger def __init__( self, config_path: Path, device_type: torch.device = CUDA_DEVICE, precision: torch.dtype = torch.float16, max_loaded_models=DEFAULT_MAX_MODELS, sequential_offload=False, logger: types.ModuleType = logger, ): """ Initialize with the path to the models.yaml config file. Optional parameters are the torch device type, precision, max_models, and sequential_offload boolean. Note that the default device type and precision are set up for a CUDA system running at half precision. """ self.config_path = config_path self.config = OmegaConf.load(self.config_path) self.cache = ModelCache( max_models=max_loaded_models, execution_device = device_type, precision = precision, sequential_offload = sequential_offload, logger = logger, ) self.cache_keys = dict() self.logger = logger def valid_model(self, model_name: str) -> bool: """ Given a model name, returns True if it is a valid identifier. """ return model_name in self.config def get_model(self, model_name: str = None, submodel: SDModelType=None, ) -> SDModelInfo: """Given a model named identified in models.yaml, return an SDModelInfo object describing it. :param model_name: symbolic name of the model in models.yaml :param submodel: an SDModelType enum indicating the portion of the model to retrieve (e.g. SDModelType.vae) """ if not model_name: model_name = self.default_model() if not self.valid_model(model_name): raise InvalidModelError( f'"{model_name}" is not a known model name. Please check your models.yaml file' ) # get the required loading info out of the config file mconfig = self.config[model_name] format = mconfig.get('format','diffusers') model_type = SDModelType.diffusion_pipeline model_parts = dict([(x.name,x) for x in SDModelType]) legacy = None if format=='ckpt': location = global_resolve_path(mconfig.weights) legacy = LegacyInfo( config_file = global_resolve_path(mconfig.config), ) if mconfig.get('vae'): legacy.vae_file = global_resolve_path(mconfig.vae) elif format=='diffusers': location = mconfig.get('repo_id') or mconfig.get('path') if sm := mconfig.get('submodel'): submodel = model_parts[sm] elif format in model_parts: location = mconfig.get('repo_id') or mconfig.get('path') or mconfig.get('weights') model_type = model_parts[format] else: raise InvalidModelError( f'"{model_name}" has an unknown format {format}' ) subfolder = mconfig.get('subfolder') revision = mconfig.get('revision') hash = self.cache.model_hash(location,revision) # to support the traditional way of attaching a VAE # to a model, we hacked in `attach_model_part` vae = (None,None) try: vae_id = mconfig.vae.repo_id vae = (SDModelType.vae,vae_id) except Exception: pass model_context = self.cache.get_model( location, model_type = model_type, revision = revision, subfolder = subfolder, legacy_info = legacy, submodel = submodel, attach_model_part=vae, ) # in case we need to communicate information about this # model to the cache manager, then we need to remember # the cache key self.cache_keys[model_name] = model_context.key return SDModelInfo( context = model_context, name = model_name, hash = hash, location = location, revision = revision, precision = self.cache.precision, subfolder = subfolder, _cache = self.cache ) def default_model(self) -> str | None: """ Returns the name of the default model, or None if none is defined. """ for model_name in self.config: if self.config[model_name].get("default"): return model_name return list(self.config.keys())[0] # first one def set_default_model(self, model_name: str) -> None: """ Set the default model. The change will not take effect until you call model_manager.commit() """ assert model_name in self.model_names(), f"unknown model '{model_name}'" config = self.config for model in config: config[model].pop("default", None) config[model_name]["default"] = True def model_info(self, model_name: str) -> dict: """ Given a model name returns the OmegaConf (dict-like) object describing it. """ if model_name not in self.config: return None return self.config[model_name] def model_names(self) -> list[str]: """ Return a list consisting of all the names of models defined in models.yaml """ return list(self.config.keys()) def is_legacy(self, model_name: str) -> bool: """ Return true if this is a legacy (.ckpt) model """ # if we are converting legacy files automatically, then # there are no legacy ckpts! if Globals.ckpt_convert: return False info = self.model_info(model_name) if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")): return True return False def list_models(self) -> dict: """ Return a dict of models in the format: { model_name1: {'status': ('active'|'cached'|'not loaded'), 'description': description, 'format': ('ckpt'|'diffusers'|'vae'), }, model_name2: { etc } Please use model_manager.models() to get all the model names, model_manager.model_info('model-name') to get the stanza for the model named 'model-name', and model_manager.config to get the full OmegaConf object derived from models.yaml """ models = {} for name in sorted(self.config, key=str.casefold): stanza = self.config[name] # don't include VAEs in listing (legacy style) if "config" in stanza and "/VAE/" in stanza["config"]: continue models[name] = dict() format = stanza.get("format", "ckpt") # Determine Format # Common Attribs status = self.cache.status( stanza.get('weights') or stanza.get('repo_id'), revision=stanza.get('revision'), subfolder=stanza.get('subfolder') ) description = stanza.get("description", None) models[name].update( description=description, format=format, status=status.value ) # Checkpoint Config Parse if format == "ckpt": models[name].update( config=str(stanza.get("config", None)), weights=str(stanza.get("weights", None)), vae=str(stanza.get("vae", None)), width=str(stanza.get("width", 512)), height=str(stanza.get("height", 512)), ) # Diffusers Config Parse if vae := stanza.get("vae", None): if isinstance(vae, DictConfig): vae = dict( repo_id=str(vae.get("repo_id", None)), path=str(vae.get("path", None)), subfolder=str(vae.get("subfolder", None)), ) if format == "diffusers": models[name].update( vae=vae, repo_id=str(stanza.get("repo_id", None)), path=str(stanza.get("path", None)), ) return models def print_models(self) -> None: """ Print a table of models, their descriptions, and load status """ models = self.list_models() for name in models: if models[name]["format"] == "vae": continue line = f'{name:25s} {models[name]["status"]:>15s} {models[name]["format"]:10s} {models[name]["description"]}' if models[name]["status"] == "active": line = f"\033[1m{line}\033[0m" print(line) def del_model(self, model_name: str, delete_files: bool = False) -> None: """ Delete the named model. """ omega = self.config if model_name not in omega: self.logger.error(f"Unknown model {model_name}") return # save these for use in deletion later conf = omega[model_name] repo_id = conf.get("repo_id", None) path = self._abs_path(conf.get("path", None)) weights = self._abs_path(conf.get("weights", None)) del omega[model_name] if model_name in self.stack: self.stack.remove(model_name) if delete_files: if weights: self.logger.info(f"Deleting file {weights}") Path(weights).unlink(missing_ok=True) elif path: self.logger.info(f"Deleting directory {path}") rmtree(path, ignore_errors=True) elif repo_id: self.logger.info(f"Deleting the cached model directory for {repo_id}") self._delete_model_from_cache(repo_id) def add_model( self, model_name: str, model_attributes: dict, clobber: bool = False ) -> None: """ Update the named model with a dictionary of attributes. Will fail with an assertion error if the name already exists. Pass clobber=True to overwrite. On a successful update, the config will be changed in memory and the method will return True. Will fail with an assertion error if provided attributes are incorrect or the model name is missing. """ omega = self.config assert "format" in model_attributes, 'missing required field "format"' if model_attributes["format"] == "diffusers": assert ( "description" in model_attributes ), 'required field "description" is missing' assert ( "path" in model_attributes or "repo_id" in model_attributes ), 'model must have either the "path" or "repo_id" fields defined' elif model_attributes["format"] == "ckpt": for field in ("description", "weights", "height", "width", "config"): assert field in model_attributes, f"required field {field} is missing" else: assert "weights" in model_attributes and "description" in model_attributes assert ( clobber or model_name not in omega ), f'attempt to overwrite existing model definition "{model_name}"' omega[model_name] = model_attributes if "weights" in omega[model_name]: omega[model_name]["weights"].replace("\\", "/") if clobber and model_name in self.cache_keys: self.cache.uncache_model(self.cache_keys[model_name]) del self.cache_keys[model_name] def import_diffuser_model( self, repo_or_path: Union[str, Path], model_name: str = None, description: str = None, vae: dict = None, commit_to_conf: Path = None, ) -> bool: """ Attempts to install the indicated diffuser model and returns True if successful. "repo_or_path" can be either a repo-id or a path-like object corresponding to the top of a downloaded diffusers directory. You can optionally provide a model name and/or description. If not provided, then these will be derived from the repo name. If you provide a commit_to_conf path to the configuration file, then the new entry will be committed to the models.yaml file. """ model_name = model_name or Path(repo_or_path).stem model_description = description or f"Imported diffusers model {model_name}" new_config = dict( description=model_description, vae=vae, format="diffusers", ) if isinstance(repo_or_path, Path) and repo_or_path.exists(): new_config.update(path=str(repo_or_path)) else: new_config.update(repo_id=repo_or_path) self.add_model(model_name, new_config, True) if commit_to_conf: self.commit(commit_to_conf) return model_name def import_lora( self, path: Path, model_name: str=None, description: str=None, ): """ Creates an entry for the indicated lora file. Call mgr.commit() to write out the configuration to models.yaml """ path = Path(path) model_name = model_name or path.stem model_description = description or f"LoRA model {model_name}" self.add_model(model_name, dict( format="lora", weights=str(path), description=model_description, ), True ) def import_embedding( self, path: Path, model_name: str=None, description: str=None, ): """ Creates an entry for the indicated lora file. Call mgr.commit() to write out the configuration to models.yaml """ path = Path(path) if path.is_directory() and (path / "learned_embeds.bin").exists(): weights = path / "learned_embeds.bin" else: weights = path model_name = model_name or path.stem model_description = description or f"Textual embedding model {model_name}" self.add_model(model_name, dict( format="textual_inversion", weights=str(path), description=model_description, ), True ) @classmethod def probe_model_type(self, checkpoint: dict) -> SDLegacyType: """ Given a pickle or safetensors model object, probes contents of the object and returns an SDLegacyType indicating its format. Valid return values include: SDLegacyType.V1 SDLegacyType.V1_INPAINT SDLegacyType.V2 (V2 prediction type unknown) SDLegacyType.V2_e (V2 using 'epsilon' prediction type) SDLegacyType.V2_v (V2 using 'v_prediction' prediction type) SDLegacyType.UNKNOWN """ global_step = checkpoint.get("global_step") state_dict = checkpoint.get("state_dict") or checkpoint try: key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if global_step == 220000: return SDLegacyType.V2_e elif global_step == 110000: return SDLegacyType.V2_v else: return SDLegacyType.V2 # otherwise we assume a V1 file in_channels = state_dict[ "model.diffusion_model.input_blocks.0.0.weight" ].shape[1] if in_channels == 9: return SDLegacyType.V1_INPAINT elif in_channels == 4: return SDLegacyType.V1 else: return SDLegacyType.UNKNOWN except KeyError: return SDLegacyType.UNKNOWN def heuristic_import( self, path_url_or_repo: str, model_name: str = None, description: str = None, model_config_file: Path = None, commit_to_conf: Path = None, config_file_callback: Callable[[Path], Path] = None, ) -> str: """Accept a string which could be: - a HF diffusers repo_id - a URL pointing to a legacy .ckpt or .safetensors file - a local path pointing to a legacy .ckpt or .safetensors file - a local directory containing .ckpt and .safetensors files - a local directory containing a diffusers model After determining the nature of the model and downloading it (if necessary), the file is probed to determine the correct configuration file (if needed) and it is imported. The model_name and/or description can be provided. If not, they will be generated automatically. If commit_to_conf is provided, the newly loaded model will be written to the `models.yaml` file at the indicated path. Otherwise, the changes will only remain in memory. The routine will do its best to figure out the config file needed to convert legacy checkpoint file, but if it can't it will call the config_file_callback routine, if provided. The callback accepts a single argument, the Path to the checkpoint file, and returns a Path to the config file to use. The (potentially derived) name of the model is returned on success, or None on failure. When multiple models are added from a directory, only the last imported one is returned. """ model_path: Path = None thing = path_url_or_repo # to save typing self.logger.info(f"Probing {thing} for import") if thing.startswith(("http:", "https:", "ftp:")): self.logger.info(f"{thing} appears to be a URL") model_path = self._resolve_path( thing, "models/ldm/stable-diffusion-v1" ) # _resolve_path does a download if needed elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")): if Path(thing).stem in ["model", "diffusion_pytorch_model"]: self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import") return else: self.logger.debug(f"{thing} appears to be a checkpoint file on disk") model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1") elif Path(thing).is_dir() and Path(thing, "model_index.json").exists(): self.logger.debug(f"{thing} appears to be a diffusers file on disk") model_name = self.import_diffuser_model( thing, vae=dict(repo_id="stabilityai/sd-vae-ft-mse"), model_name=model_name, description=description, commit_to_conf=commit_to_conf, ) elif Path(thing).is_dir(): if (Path(thing) / "model_index.json").exists(): self.logger.debug(f"{thing} appears to be a diffusers model.") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) else: self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import") for m in list(Path(thing).rglob("*.ckpt")) + list( Path(thing).rglob("*.safetensors") ): if model_name := self.heuristic_import( str(m), commit_to_conf=commit_to_conf ): self.logger.info(f"{model_name} successfully imported") return model_name elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing): self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name]) return model_name else: self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id") # Model_path is set in the event of a legacy checkpoint file. # If not set, we're all done if not model_path: return if model_path.stem in self.config: # already imported self.logger.debug("Already imported. Skipping") return model_path.stem # another round of heuristics to guess the correct config file. checkpoint = None if model_path.suffix in [".ckpt", ".pt"]: self.scan_model(model_path, model_path) checkpoint = torch.load(model_path) else: checkpoint = safetensors.torch.load_file(model_path) # additional probing needed if no config file provided if model_config_file is None: # look for a like-named .yaml file in same directory if model_path.with_suffix(".yaml").exists(): model_config_file = model_path.with_suffix(".yaml") self.logger.debug(f"Using config file {model_config_file.name}") else: model_type = self.probe_model_type(checkpoint) if model_type == SDLegacyType.V1: self.logger.debug("SD-v1 model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v1-inference.yaml" ) elif model_type == SDLegacyType.V1_INPAINT: self.logger.debug("SD-v1 inpainting model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml", ) elif model_type == SDLegacyType.V2_v: self.logger.debug("SD-v2-v model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v2-inference-v.yaml" ) elif model_type == SDLegacyType.V2_e: self.logger.debug("SD-v2-e model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v2-inference.yaml" ) elif model_type == SDLegacyType.V2: self.logger.warning( f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path." ) return else: self.logger.warning( f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path." ) return if not model_config_file and config_file_callback: model_config_file = config_file_callback(model_path) # despite our best efforts, we could not find a model config file, so give up if not model_config_file: return # look for a custom vae, a like-named file ending with .vae in the same directory vae_path = None for suffix in ["pt", "ckpt", "safetensors"]: if (model_path.with_suffix(f".vae.{suffix}")).exists(): vae_path = model_path.with_suffix(f".vae.{suffix}") self.logger.debug(f"Using VAE file {vae_path.name}") vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse") diffuser_path = Path( Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem ) model_name = self.convert_and_import( model_path, diffusers_path=diffuser_path, vae=vae, vae_path=str(vae_path), model_name=model_name, model_description=description, original_config_file=model_config_file, commit_to_conf=commit_to_conf, scan_needed=False, ) return model_name def convert_and_import( self, ckpt_path: Path, diffusers_path: Path, model_name=None, model_description=None, vae: dict = None, vae_path: Path = None, original_config_file: Path = None, commit_to_conf: Path = None, scan_needed: bool = True, ) -> str: """ Convert a legacy ckpt weights file to diffuser model and import into models.yaml. """ ckpt_path = self._resolve_path(ckpt_path, "models/ldm/stable-diffusion-v1") if original_config_file: original_config_file = self._resolve_path( original_config_file, "configs/stable-diffusion" ) new_config = None if diffusers_path.exists(): self.logger.error( f"The path {str(diffusers_path)} already exists. Please move or remove it and try again." ) return model_name = model_name or diffusers_path.name model_description = model_description or f"Converted version of {model_name}" self.logger.debug(f"Converting {model_name} to diffusers (30-60s)") # to avoid circular import errors from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers try: # By passing the specified VAE to the conversion function, the autoencoder # will be built into the model rather than tacked on afterward via the config file vae_model = None if vae: vae_model = self._load_vae(vae) vae_path = None convert_ckpt_to_diffusers( ckpt_path, diffusers_path, extract_ema=True, original_config_file=original_config_file, vae=vae_model, vae_path=vae_path, scan_needed=scan_needed, ) self.logger.debug( f"Success. Converted model is now located at {str(diffusers_path)}" ) self.logger.debug(f"Writing new config file entry for {model_name}") new_config = dict( path=str(diffusers_path), description=model_description, format="diffusers", ) if model_name in self.config: self.del_model(model_name) self.add_model(model_name, new_config, True) if commit_to_conf: self.commit(commit_to_conf) self.logger.debug("Conversion succeeded") except Exception as e: self.logger.warning(f"Conversion failed: {str(e)}") self.logger.warning( "If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)" ) return model_name def search_models(self, search_folder): self.logger.info(f"Finding Models In: {search_folder}") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_safetensors = Path(search_folder).glob("**/*.safetensors") ckpt_files = [x for x in models_folder_ckpt if x.is_file()] safetensor_files = [x for x in models_folder_safetensors if x.is_file()] files = ckpt_files + safetensor_files found_models = [] for file in files: location = str(file.resolve()).replace("\\", "/") if ( "model.safetensors" not in location and "diffusion_pytorch_model.safetensors" not in location ): found_models.append({"name": file.stem, "location": location}) return search_folder, found_models def commit(self) -> None: """ Write current configuration out to the indicated file. """ yaml_str = OmegaConf.to_yaml(self.config) config_file_path = self.config_path tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp") with open(tmpfile, "w", encoding="utf-8") as outfile: outfile.write(self.preamble()) outfile.write(yaml_str) os.replace(tmpfile, config_file_path) def preamble(self) -> str: """ Returns the preamble for the config file. """ return textwrap.dedent( """\ # This file describes the alternative machine learning models # available to InvokeAI script. # # To add a new model, follow the examples below. Each # model requires a model config file, a weights file, # and the width and height of the images it # was trained on. """ ) @classmethod def _delete_model_from_cache(cls,repo_id): cache_info = scan_cache_dir(global_cache_dir("hub")) # I'm sure there is a way to do this with comprehensions # but the code quickly became incomprehensible! hashes_to_delete = set() for repo in cache_info.repos: if repo.repo_id == repo_id: for revision in repo.revisions: hashes_to_delete.add(revision.commit_hash) strategy = cache_info.delete_revisions(*hashes_to_delete) cls.logger.warning( f"Deletion of this model is expected to free {strategy.expected_freed_size_str}" ) strategy.execute() @staticmethod def _abs_path(path: str | Path) -> Path: if path is None or Path(path).is_absolute(): return path return Path(Globals.root, path).resolve()