# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) from base64 import urlsafe_b64encode import json import string from copy import deepcopy from datetime import datetime, timezone from enum import Enum from typing import Any, Dict, List, Union from uuid import uuid4 class DreamBase(): # Id id: str # Initial Image enable_init_image: bool initimg: string = None # Img2Img enable_img2img: bool # TODO: support this better strength: float = 0 # TODO: name this something related to img2img to make it clearer? fit = None # Fit initial image dimensions # Generation enable_generate: bool prompt: string = "" seed: int = 0 # 0 is random steps: int = 10 width: int = 512 height: int = 512 cfg_scale: float = 7.5 threshold: float = 0.0 perlin: float = 0.0 sampler_name: string = 'klms' seamless: bool = False model: str = None # The model to use (currently unused) embeddings = None # The embeddings to use (currently unused) progress_images: bool = False # GFPGAN enable_gfpgan: bool gfpgan_strength: float = 0 # Upscale enable_upscale: bool upscale: None upscale_level: int = None upscale_strength: float = 0.75 # Embiggen enable_embiggen: bool embiggen: Union[None, List[float]] = None embiggen_tiles: Union[None, List[int]] = None # Metadata time: int def __init__(self): self.id = urlsafe_b64encode(uuid4().bytes).decode('ascii') def parse_json(self, j, new_instance=False): # Id if 'id' in j and not new_instance: self.id = j.get('id') # Initial Image self.enable_init_image = 'enable_init_image' in j and bool(j.get('enable_init_image')) if self.enable_init_image: self.initimg = j.get('initimg') # Img2Img self.enable_img2img = 'enable_img2img' in j and bool(j.get('enable_img2img')) if self.enable_img2img: self.strength = float(j.get('strength')) self.fit = 'fit' in j # Generation self.enable_generate = 'enable_generate' in j and bool(j.get('enable_generate')) if self.enable_generate: self.prompt = j.get('prompt') self.seed = int(j.get('seed')) self.steps = int(j.get('steps')) self.width = int(j.get('width')) self.height = int(j.get('height')) self.cfg_scale = float(j.get('cfgscale') or j.get('cfg_scale')) self.threshold = float(j.get('threshold')) self.perlin = float(j.get('perlin')) self.sampler_name = j.get('sampler') or j.get('sampler_name') # model: str = None # The model to use (currently unused) # embeddings = None # The embeddings to use (currently unused) self.seamless = 'seamless' in j self.progress_images = 'progress_images' in j # GFPGAN self.enable_gfpgan = 'enable_gfpgan' in j and bool(j.get('enable_gfpgan')) if self.enable_gfpgan: self.gfpgan_strength = float(j.get('gfpgan_strength')) # Upscale self.enable_upscale = 'enable_upscale' in j and bool(j.get('enable_upscale')) if self.enable_upscale: self.upscale_level = j.get('upscale_level') self.upscale_strength = j.get('upscale_strength') self.upscale = None if self.upscale_level in {None,''} else [int(self.upscale_level),float(self.upscale_strength)] # Embiggen self.enable_embiggen = 'enable_embiggen' in j and bool(j.get('enable_embiggen')) if self.enable_embiggen: self.embiggen = j.get('embiggen') self.embiggen_tiles = j.get('embiggen_tiles') # Metadata self.time = int(j.get('time')) if ('time' in j and not new_instance) else int(datetime.now(timezone.utc).timestamp()) class DreamResult(DreamBase): # Result has_upscaled: False has_gfpgan: False # TODO: use something else for state tracking images_generated: int = 0 images_upscaled: int = 0 def __init__(self): super().__init__() def clone_without_img(self): copy = deepcopy(self) copy.initimg = None return copy def to_json(self): copy = deepcopy(self) copy.initimg = None j = json.dumps(copy.__dict__) return j @staticmethod def from_json(j, newTime: bool = False): d = DreamResult() d.parse_json(j) return d # TODO: switch this to a pipelined request, with pluggable steps # Will likely require generator code changes to accomplish class JobRequest(DreamBase): # Iteration iterations: int = 1 variation_amount = None with_variations = None # Results results: List[DreamResult] = [] def __init__(self): super().__init__() def newDreamResult(self) -> DreamResult: result = DreamResult() result.parse_json(self.__dict__, new_instance=True) return result @staticmethod def from_json(j): job = JobRequest() job.parse_json(j) # Metadata job.time = int(j.get('time')) if ('time' in j) else int(datetime.now(timezone.utc).timestamp()) # Iteration if job.enable_generate: job.iterations = int(j.get('iterations')) job.variation_amount = float(j.get('variation_amount')) job.with_variations = j.get('with_variations') return job class ProgressType(Enum): GENERATION = 1 UPSCALING_STARTED = 2 UPSCALING_DONE = 3 class Signal(): event: str data = None room: str = None broadcast: bool = False def __init__(self, event: str, data, room: str = None, broadcast: bool = False): self.event = event self.data = data self.room = room self.broadcast = broadcast @staticmethod def image_progress(jobId: str, dreamId: str, step: int, totalSteps: int, progressType: ProgressType = ProgressType.GENERATION, hasProgressImage: bool = False): return Signal('dream_progress', { 'jobId': jobId, 'dreamId': dreamId, 'step': step, 'totalSteps': totalSteps, 'hasProgressImage': hasProgressImage, 'progressType': progressType.name }, room=jobId, broadcast=True) # TODO: use a result id or something? Like a sub-job @staticmethod def image_result(jobId: str, dreamId: str, dreamResult: DreamResult): return Signal('dream_result', { 'jobId': jobId, 'dreamId': dreamId, 'dreamRequest': dreamResult.clone_without_img().__dict__ }, room=jobId, broadcast=True) @staticmethod def job_started(jobId: str): return Signal('job_started', { 'jobId': jobId }, room=jobId, broadcast=True) @staticmethod def job_done(jobId: str): return Signal('job_done', { 'jobId': jobId }, room=jobId, broadcast=True) @staticmethod def job_canceled(jobId: str): return Signal('job_canceled', { 'jobId': jobId }, room=jobId, broadcast=True) class PaginatedItems(): items: List[Any] page: int # Current Page pages: int # Total number of pages per_page: int # Number of items per page total: int # Total number of items in result def __init__(self, items: List[Any], page: int, pages: int, per_page: int, total: int): self.items = items self.page = page self.pages = pages self.per_page = per_page self.total = total def to_json(self): return json.dumps(self.__dict__)