# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) from functools import partial from typing import Literal, Optional, Union import numpy as np from torch import Tensor from pydantic import BaseModel, Field from invokeai.app.invocations.models.config import ( InvocationConfig, ) from invokeai.app.models.image import ImageField, ImageType from invokeai.app.invocations.util.get_model import choose_model from .baseinvocation import BaseInvocation, InvocationContext from .image import ImageOutput from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator from ...backend.stable_diffusion import PipelineIntermediateState from ..models.exceptions import CanceledException from ..util.step_callback import diffusers_step_callback_adapter SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())] class SDImageInvocation(BaseModel): """Helper class to provide all Stable Diffusion raster image invocations with additional config""" # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["stable-diffusion", "image"], "type_hints": { "model": "model", }, }, } # Text to image class TextToImageInvocation(BaseInvocation, SDImageInvocation): """Generates an image using text2img.""" type: Literal["txt2img"] = "txt2img" # Inputs # TODO: consider making prompt optional to enable providing prompt through a link # fmt: off prompt: Optional[str] = Field(description="The prompt to generate an image from") seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", ) steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", ) height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", ) cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) model: str = Field(default="", description="The model to use (currently ignored)") progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", ) # fmt: on # TODO: pass this an emitter method or something? or a session for dispatching? def dispatch_progress( self, context: InvocationContext, intermediate_state: PipelineIntermediateState ) -> None: if (context.services.queue.is_canceled(context.graph_execution_state_id)): raise CanceledException step = intermediate_state.step if intermediate_state.predicted_original is not None: # Some schedulers report not only the noisy latents at the current timestep, # but also their estimate so far of what the de-noised latents will be. sample = intermediate_state.predicted_original else: sample = intermediate_state.latents diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context) def invoke(self, context: InvocationContext) -> ImageOutput: # Handle invalid model parameter model = choose_model(context.services.model_manager, self.model) outputs = Txt2Img(model).generate( prompt=self.prompt, step_callback=partial(self.dispatch_progress, context), **self.dict( exclude={"prompt"} ), # Shorthand for passing all of the parameters above manually ) # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # each time it is called. We only need the first one. generate_output = next(outputs) # Results are image and seed, unwrap for now and ignore the seed # TODO: pre-seed? # TODO: can this return multiple results? Should it? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) context.services.images.save(image_type, image_name, generate_output.image) return ImageOutput( image=ImageField(image_type=image_type, image_name=image_name) ) class ImageToImageInvocation(TextToImageInvocation): """Generates an image using img2img.""" type: Literal["img2img"] = "img2img" # Inputs image: Union[ImageField, None] = Field(description="The input image") strength: float = Field( default=0.75, gt=0, le=1, description="The strength of the original image" ) fit: bool = Field( default=True, description="Whether or not the result should be fit to the aspect ratio of the input image", ) def dispatch_progress( self, context: InvocationContext, intermediate_state: PipelineIntermediateState ) -> None: if (context.services.queue.is_canceled(context.graph_execution_state_id)): raise CanceledException step = intermediate_state.step if intermediate_state.predicted_original is not None: # Some schedulers report not only the noisy latents at the current timestep, # but also their estimate so far of what the de-noised latents will be. sample = intermediate_state.predicted_original else: sample = intermediate_state.latents diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context) def invoke(self, context: InvocationContext) -> ImageOutput: image = ( None if self.image is None else context.services.images.get( self.image.image_type, self.image.image_name ) ) mask = None # Handle invalid model parameter model = choose_model(context.services.model_manager, self.model) outputs = Img2Img(model).generate( prompt=self.prompt, init_image=image, init_mask=mask, step_callback=partial(self.dispatch_progress, context), **self.dict( exclude={"prompt", "image", "mask"} ), # Shorthand for passing all of the parameters above manually ) # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # each time it is called. We only need the first one. generator_output = next(outputs) result_image = generator_output.image # Results are image and seed, unwrap for now and ignore the seed # TODO: pre-seed? # TODO: can this return multiple results? Should it? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) context.services.images.save(image_type, image_name, result_image) return ImageOutput( image=ImageField(image_type=image_type, image_name=image_name) ) class InpaintInvocation(ImageToImageInvocation): """Generates an image using inpaint.""" type: Literal["inpaint"] = "inpaint" # Inputs mask: Union[ImageField, None] = Field(description="The mask") inpaint_replace: float = Field( default=0.0, ge=0.0, le=1.0, description="The amount by which to replace masked areas with latent noise", ) def dispatch_progress( self, context: InvocationContext, intermediate_state: PipelineIntermediateState ) -> None: if (context.services.queue.is_canceled(context.graph_execution_state_id)): raise CanceledException step = intermediate_state.step if intermediate_state.predicted_original is not None: # Some schedulers report not only the noisy latents at the current timestep, # but also their estimate so far of what the de-noised latents will be. sample = intermediate_state.predicted_original else: sample = intermediate_state.latents diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context) def invoke(self, context: InvocationContext) -> ImageOutput: image = ( None if self.image is None else context.services.images.get( self.image.image_type, self.image.image_name ) ) mask = ( None if self.mask is None else context.services.images.get(self.mask.image_type, self.mask.image_name) ) # Handle invalid model parameter model = choose_model(context.services.model_manager, self.model) outputs = Inpaint(model).generate( prompt=self.prompt, init_img=image, init_mask=mask, step_callback=partial(self.dispatch_progress, context), **self.dict( exclude={"prompt", "image", "mask"} ), # Shorthand for passing all of the parameters above manually ) # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # each time it is called. We only need the first one. generator_output = next(outputs) result_image = generator_output.image # Results are image and seed, unwrap for now and ignore the seed # TODO: pre-seed? # TODO: can this return multiple results? Should it? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) context.services.images.save(image_type, image_name, result_image) return ImageOutput( image=ImageField(image_type=image_type, image_name=image_name) )