from datetime import datetime, timezone from typing import Literal, Union from pydantic import Field from invokeai.app.invocations.models.config import InvocationConfig from invokeai.app.models.image import ImageField, ImageType from ..services.invocation_services import InvocationServices from .baseinvocation import BaseInvocation, InvocationContext from .image import ImageOutput class RestoreFaceInvocation(BaseInvocation): """Restores faces in an image.""" #fmt: off type: Literal["restore_face"] = "restore_face" # Inputs image: Union[ImageField, None] = Field(description="The input image") strength: float = Field(default=0.75, gt=0, le=1, description="The strength of the restoration" ) #fmt: on # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["restoration", "image"], }, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) results = context.services.restoration.upscale_and_reconstruct( image_list=[[image, 0]], upscale=None, strength=self.strength, # GFPGAN strength save_original=False, image_callback=None, ) # Results are image and seed, unwrap for now # TODO: can this return multiple results? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) context.services.images.save(image_type, image_name, results[0][0]) return ImageOutput( image=ImageField(image_type=image_type, image_name=image_name) )