import os import sys import warnings import numpy as np import torch import invokeai.backend.util.logging as logger from invokeai.app.services.config import InvokeAIAppConfig pretrained_model_url = ( "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth" ) class CodeFormerRestoration: def __init__( self, codeformer_dir="models/codeformer", codeformer_model_path="codeformer.pth" ) -> None: self.globals = InvokeAIAppConfig.get_config() codeformer_dir = self.globals.root_dir / codeformer_dir self.model_path = codeformer_dir / codeformer_model_path self.codeformer_model_exists = self.model_path.exists() if not self.codeformer_model_exists: logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path) sys.path.append(os.path.abspath(codeformer_dir)) def process(self, image, strength, device, seed=None, fidelity=0.75): if seed is not None: logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}") with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning) from basicsr.utils import img2tensor, tensor2img from basicsr.utils.download_util import load_file_from_url from facexlib.utils.face_restoration_helper import FaceRestoreHelper from PIL import Image from torchvision.transforms.functional import normalize from .codeformer_arch import CodeFormer cf_class = CodeFormer cf = cf_class( dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=["32", "64", "128", "256"], ).to(device) # note that this file should already be downloaded and cached at # this point checkpoint_path = load_file_from_url( url=pretrained_model_url, model_dir=os.path.abspath(os.path.dirname(self.model_path)), progress=True, ) checkpoint = torch.load(checkpoint_path)["params_ema"] cf.load_state_dict(checkpoint) cf.eval() image = image.convert("RGB") # Codeformer expects a BGR np array; make array and flip channels bgr_image_array = np.array(image, dtype=np.uint8)[..., ::-1] face_helper = FaceRestoreHelper( upscale_factor=1, use_parse=True, device=device, model_rootpath = self.globals.root_dir / "gfpgan" / "weights" ) face_helper.clean_all() face_helper.read_image(bgr_image_array) face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5) face_helper.align_warp_face() for idx, cropped_face in enumerate(face_helper.cropped_faces): cropped_face_t = img2tensor( cropped_face / 255.0, bgr2rgb=True, float32=True ) normalize( cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True ) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): output = cf(cropped_face_t, w=fidelity, adain=True)[0] restored_face = tensor2img( output.squeeze(0), rgb2bgr=True, min_max=(-1, 1) ) del output torch.cuda.empty_cache() except RuntimeError as error: logger.error(f"Failed inference for CodeFormer: {error}.") restored_face = cropped_face restored_face = restored_face.astype("uint8") face_helper.add_restored_face(restored_face) face_helper.get_inverse_affine(None) restored_img = face_helper.paste_faces_to_input_image() # Flip the channels back to RGB res = Image.fromarray(restored_img[..., ::-1]) if strength < 1.0: # Resize the image to the new image if the sizes have changed if restored_img.size != image.size: image = image.resize(res.size) res = Image.blend(image, res, strength) cf = None return res