# Code from the original DWPose Implementation: https://github.com/IDEA-Research/DWPose
# Modified pathing to suit Invoke


import numpy as np
import onnxruntime as ort

from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.util.devices import choose_torch_device

from .onnxdet import inference_detector
from .onnxpose import inference_pose

DWPOSE_MODELS = {
    "yolox_l.onnx": {
        "local": "any/annotators/dwpose/yolox_l.onnx",
        "url": "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx?download=true",
    },
    "dw-ll_ucoco_384.onnx": {
        "local": "any/annotators/dwpose/dw-ll_ucoco_384.onnx",
        "url": "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx?download=true",
    },
}

config = get_config()


class Wholebody:
    def __init__(self):
        device = choose_torch_device()

        providers = ["CUDAExecutionProvider"] if device == "cuda" else ["CPUExecutionProvider"]

        DET_MODEL_PATH = config.models_path / DWPOSE_MODELS["yolox_l.onnx"]["local"]
        download_with_progress_bar("yolox_l.onnx", DWPOSE_MODELS["yolox_l.onnx"]["url"], DET_MODEL_PATH)

        POSE_MODEL_PATH = config.models_path / DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["local"]
        download_with_progress_bar(
            "dw-ll_ucoco_384.onnx", DWPOSE_MODELS["dw-ll_ucoco_384.onnx"]["url"], POSE_MODEL_PATH
        )

        onnx_det = DET_MODEL_PATH
        onnx_pose = POSE_MODEL_PATH

        self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
        self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)

    def __call__(self, oriImg):
        det_result = inference_detector(self.session_det, oriImg)
        keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)

        keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1)
        # compute neck joint
        neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
        # neck score when visualizing pred
        neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int)
        new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1)
        mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3]
        openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]
        new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx]
        keypoints_info = new_keypoints_info

        keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2]

        return keypoints, scores