# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654), 2023 Kent Keirsey (https://github.com/hipsterusername), 2023 Lincoln D. Stein import pathlib from typing import List, Literal, Optional, Union from fastapi import Body, Path, Query, Response from fastapi.routing import APIRouter from pydantic import BaseModel, parse_obj_as from starlette.exceptions import HTTPException from invokeai.backend import BaseModelType, ModelType from invokeai.backend.model_management import MergeInterpolationMethod from invokeai.backend.model_management.models import ( OPENAPI_MODEL_CONFIGS, InvalidModelException, ModelNotFoundException, SchedulerPredictionType, ) from ..dependencies import ApiDependencies models_router = APIRouter(prefix="/v1/models", tags=["models"]) UpdateModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ImportModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)] ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)] class ModelsList(BaseModel): models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]] @models_router.get( "/", operation_id="list_models", responses={200: {"model": ModelsList}}, ) async def list_models( base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"), model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"), ) -> ModelsList: """Gets a list of models""" if base_models and len(base_models) > 0: models_raw = list() for base_model in base_models: models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)) else: models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type) models = parse_obj_as(ModelsList, {"models": models_raw}) return models @models_router.patch( "/{base_model}/{model_type}/{model_name}", operation_id="update_model", responses={ 200: {"description": "The model was updated successfully"}, 400: {"description": "Bad request"}, 404: {"description": "The model could not be found"}, 409: {"description": "There is already a model corresponding to the new name"}, }, status_code=200, response_model=UpdateModelResponse, ) async def update_model( base_model: BaseModelType = Path(description="Base model"), model_type: ModelType = Path(description="The type of model"), model_name: str = Path(description="model name"), info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"), ) -> UpdateModelResponse: """Update model contents with a new config. If the model name or base fields are changed, then the model is renamed.""" logger = ApiDependencies.invoker.services.logger try: previous_info = ApiDependencies.invoker.services.model_manager.list_model( model_name=model_name, base_model=base_model, model_type=model_type, ) # rename operation requested if info.model_name != model_name or info.base_model != base_model: ApiDependencies.invoker.services.model_manager.rename_model( base_model=base_model, model_type=model_type, model_name=model_name, new_name=info.model_name, new_base=info.base_model, ) logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}") # update information to support an update of attributes model_name = info.model_name base_model = info.base_model new_info = ApiDependencies.invoker.services.model_manager.list_model( model_name=model_name, base_model=base_model, model_type=model_type, ) if new_info.get("path") != previous_info.get( "path" ): # model manager moved model path during rename - don't overwrite it info.path = new_info.get("path") # replace empty string values with None/null to avoid phenomenon of vae: '' info_dict = info.dict() info_dict = {x: info_dict[x] if info_dict[x] else None for x in info_dict.keys()} ApiDependencies.invoker.services.model_manager.update_model( model_name=model_name, base_model=base_model, model_type=model_type, model_attributes=info_dict ) model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name=model_name, base_model=base_model, model_type=model_type, ) model_response = parse_obj_as(UpdateModelResponse, model_raw) except ModelNotFoundException as e: raise HTTPException(status_code=404, detail=str(e)) except ValueError as e: logger.error(str(e)) raise HTTPException(status_code=409, detail=str(e)) except Exception as e: logger.error(str(e)) raise HTTPException(status_code=400, detail=str(e)) return model_response @models_router.post( "/import", operation_id="import_model", responses={ 201: {"description": "The model imported successfully"}, 404: {"description": "The model could not be found"}, 415: {"description": "Unrecognized file/folder format"}, 424: {"description": "The model appeared to import successfully, but could not be found in the model manager"}, 409: {"description": "There is already a model corresponding to this path or repo_id"}, }, status_code=201, response_model=ImportModelResponse, ) async def import_model( location: str = Body(description="A model path, repo_id or URL to import"), prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body( description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints", default=None, ), ) -> ImportModelResponse: """Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically""" items_to_import = {location} prediction_types = {x.value: x for x in SchedulerPredictionType} logger = ApiDependencies.invoker.services.logger print(f"DEBUG: prediction_type = {prediction_type}") try: installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import( items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type) ) info = installed_models.get(location) if not info: logger.error("Import failed") raise HTTPException(status_code=415) logger.info(f"Successfully imported {location}, got {info}") model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name=info.name, base_model=info.base_model, model_type=info.model_type ) return parse_obj_as(ImportModelResponse, model_raw) except ModelNotFoundException as e: logger.error(str(e)) raise HTTPException(status_code=404, detail=str(e)) except InvalidModelException as e: logger.error(str(e)) raise HTTPException(status_code=415) except ValueError as e: logger.error(str(e)) raise HTTPException(status_code=409, detail=str(e)) @models_router.post( "/add", operation_id="add_model", responses={ 201: {"description": "The model added successfully"}, 404: {"description": "The model could not be found"}, 424: {"description": "The model appeared to add successfully, but could not be found in the model manager"}, 409: {"description": "There is already a model corresponding to this path or repo_id"}, }, status_code=201, response_model=ImportModelResponse, ) async def add_model( info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"), ) -> ImportModelResponse: """Add a model using the configuration information appropriate for its type. Only local models can be added by path""" logger = ApiDependencies.invoker.services.logger try: ApiDependencies.invoker.services.model_manager.add_model( info.model_name, info.base_model, info.model_type, model_attributes=info.dict() ) logger.info(f"Successfully added {info.model_name}") model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name=info.model_name, base_model=info.base_model, model_type=info.model_type ) return parse_obj_as(ImportModelResponse, model_raw) except ModelNotFoundException as e: logger.error(str(e)) raise HTTPException(status_code=404, detail=str(e)) except ValueError as e: logger.error(str(e)) raise HTTPException(status_code=409, detail=str(e)) @models_router.delete( "/{base_model}/{model_type}/{model_name}", operation_id="del_model", responses={204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}}, status_code=204, response_model=None, ) async def delete_model( base_model: BaseModelType = Path(description="Base model"), model_type: ModelType = Path(description="The type of model"), model_name: str = Path(description="model name"), ) -> Response: """Delete Model""" logger = ApiDependencies.invoker.services.logger try: ApiDependencies.invoker.services.model_manager.del_model( model_name, base_model=base_model, model_type=model_type ) logger.info(f"Deleted model: {model_name}") return Response(status_code=204) except ModelNotFoundException as e: logger.error(str(e)) raise HTTPException(status_code=404, detail=str(e)) @models_router.put( "/convert/{base_model}/{model_type}/{model_name}", operation_id="convert_model", responses={ 200: {"description": "Model converted successfully"}, 400: {"description": "Bad request"}, 404: {"description": "Model not found"}, }, status_code=200, response_model=ConvertModelResponse, ) async def convert_model( base_model: BaseModelType = Path(description="Base model"), model_type: ModelType = Path(description="The type of model"), model_name: str = Path(description="model name"), convert_dest_directory: Optional[str] = Query( default=None, description="Save the converted model to the designated directory" ), ) -> ConvertModelResponse: """Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none.""" logger = ApiDependencies.invoker.services.logger try: logger.info(f"Converting model: {model_name}") dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None ApiDependencies.invoker.services.model_manager.convert_model( model_name, base_model=base_model, model_type=model_type, convert_dest_directory=dest, ) model_raw = ApiDependencies.invoker.services.model_manager.list_model( model_name, base_model=base_model, model_type=model_type ) response = parse_obj_as(ConvertModelResponse, model_raw) except ModelNotFoundException as e: raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}") except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) return response @models_router.get( "/search", operation_id="search_for_models", responses={ 200: {"description": "Directory searched successfully"}, 404: {"description": "Invalid directory path"}, }, status_code=200, response_model=List[pathlib.Path], ) async def search_for_models( search_path: pathlib.Path = Query(description="Directory path to search for models"), ) -> List[pathlib.Path]: if not search_path.is_dir(): raise HTTPException( status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory" ) return ApiDependencies.invoker.services.model_manager.search_for_models(search_path) @models_router.get( "/ckpt_confs", operation_id="list_ckpt_configs", responses={ 200: {"description": "paths retrieved successfully"}, }, status_code=200, response_model=List[pathlib.Path], ) async def list_ckpt_configs() -> List[pathlib.Path]: """Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT.""" return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs() @models_router.post( "/sync", operation_id="sync_to_config", responses={ 201: {"description": "synchronization successful"}, }, status_code=201, response_model=bool, ) async def sync_to_config() -> bool: """Call after making changes to models.yaml, autoimport directories or models directory to synchronize in-memory data structures with disk data structures.""" ApiDependencies.invoker.services.model_manager.sync_to_config() return True @models_router.put( "/merge/{base_model}", operation_id="merge_models", responses={ 200: {"description": "Model converted successfully"}, 400: {"description": "Incompatible models"}, 404: {"description": "One or more models not found"}, }, status_code=200, response_model=MergeModelResponse, ) async def merge_models( base_model: BaseModelType = Path(description="Base model"), model_names: List[str] = Body(description="model name", min_items=2, max_items=3), merged_model_name: Optional[str] = Body(description="Name of destination model"), alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5), interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"), force: Optional[bool] = Body( description="Force merging of models created with different versions of diffusers", default=False ), merge_dest_directory: Optional[str] = Body( description="Save the merged model to the designated directory (with 'merged_model_name' appended)", default=None, ), ) -> MergeModelResponse: """Convert a checkpoint model into a diffusers model""" logger = ApiDependencies.invoker.services.logger try: logger.info(f"Merging models: {model_names} into {merge_dest_directory or ''}/{merged_model_name}") dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None result = ApiDependencies.invoker.services.model_manager.merge_models( model_names, base_model, merged_model_name=merged_model_name or "+".join(model_names), alpha=alpha, interp=interp, force=force, merge_dest_directory=dest, ) model_raw = ApiDependencies.invoker.services.model_manager.list_model( result.name, base_model=base_model, model_type=ModelType.Main, ) response = parse_obj_as(ConvertModelResponse, model_raw) except ModelNotFoundException: raise HTTPException(status_code=404, detail=f"One or more of the models '{model_names}' not found") except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) return response