from typing import Any, Dict import torch from optimum.quanto.nn import QModuleMixin from optimum.quanto.quantize import _quantize_submodule, freeze def custom_freeze(model: torch.nn.Module): for name, m in model.named_modules(): if isinstance(m, QModuleMixin): m.freeze() def requantize( model: torch.nn.Module, state_dict: Dict[str, Any], quantization_map: Dict[str, Dict[str, str]], device: torch.device = None, ): if device is None: device = next(model.parameters()).device if device.type == "meta": device = torch.device("cpu") # Quantize the model with parameters from the quantization map for name, m in model.named_modules(): qconfig = quantization_map.get(name, None) if qconfig is not None: weights = qconfig["weights"] if weights == "none": weights = None activations = qconfig["activations"] if activations == "none": activations = None _quantize_submodule(model, name, m, weights=weights, activations=activations) # Move model parameters and buffers to CPU before materializing quantized weights for name, m in model.named_modules(): def move_tensor(t, device): if t.device.type == "meta": return torch.empty_like(t, device=device) return t.to(device) for name, param in m.named_parameters(recurse=False): setattr(m, name, torch.nn.Parameter(move_tensor(param, "cpu"))) for name, param in m.named_buffers(recurse=False): setattr(m, name, move_tensor(param, "cpu")) # Freeze model and move to target device freeze(model) model.to(device) # Load the quantized model weights model.load_state_dict(state_dict, strict=False)