import torch from PIL import Image from invokeai.app.models.exceptions import CanceledException from invokeai.app.models.image import ProgressImage from ..invocations.baseinvocation import InvocationContext from ...backend.util.util import image_to_dataURL from ...backend.stable_diffusion import PipelineIntermediateState from invokeai.app.services.config import InvokeAIAppConfig from ...backend.model_management.models import BaseModelType def sample_to_lowres_estimated_image(samples, latent_rgb_factors, smooth_matrix=None): latent_image = samples[0].permute(1, 2, 0) @ latent_rgb_factors if smooth_matrix is not None: latent_image = latent_image.unsqueeze(0).permute(3, 0, 1, 2) latent_image = torch.nn.functional.conv2d(latent_image, smooth_matrix.reshape((1, 1, 3, 3)), padding=1) latent_image = latent_image.permute(1, 2, 3, 0).squeeze(0) latents_ubyte = ( ((latent_image + 1) / 2).clamp(0, 1).mul(0xFF).byte() # change scale from -1..1 to 0..1 # to 0..255 ).cpu() return Image.fromarray(latents_ubyte.numpy()) def stable_diffusion_step_callback( context: InvocationContext, intermediate_state: PipelineIntermediateState, node: dict, source_node_id: str, base_model: BaseModelType, ): if context.services.queue.is_canceled(context.graph_execution_state_id): raise CanceledException # Some schedulers report not only the noisy latents at the current timestep, # but also their estimate so far of what the de-noised latents will be. Use # that estimate if it is available. if intermediate_state.predicted_original is not None: sample = intermediate_state.predicted_original else: sample = intermediate_state.latents # TODO: This does not seem to be needed any more? # # txt2img provides a Tensor in the step_callback # # img2img provides a PipelineIntermediateState # if isinstance(sample, PipelineIntermediateState): # # this was an img2img # print('img2img') # latents = sample.latents # step = sample.step # else: # print('txt2img') # latents = sample # step = intermediate_state.step # TODO: only output a preview image when requested if base_model in [BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner]: sdxl_latent_rgb_factors = torch.tensor( [ # R G B [0.3816, 0.4930, 0.5320], [-0.3753, 0.1631, 0.1739], [0.1770, 0.3588, -0.2048], [-0.4350, -0.2644, -0.4289], ], dtype=sample.dtype, device=sample.device, ) sdxl_smooth_matrix = torch.tensor( [ # [ 0.0478, 0.1285, 0.0478], # [ 0.1285, 0.2948, 0.1285], # [ 0.0478, 0.1285, 0.0478], [0.0358, 0.0964, 0.0358], [0.0964, 0.4711, 0.0964], [0.0358, 0.0964, 0.0358], ], dtype=sample.dtype, device=sample.device, ) image = sample_to_lowres_estimated_image(sample, sdxl_latent_rgb_factors, sdxl_smooth_matrix) else: # origingally adapted from code by @erucipe and @keturn here: # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7 # these updated numbers for v1.5 are from @torridgristle v1_5_latent_rgb_factors = torch.tensor( [ # R G B [0.3444, 0.1385, 0.0670], # L1 [0.1247, 0.4027, 0.1494], # L2 [-0.3192, 0.2513, 0.2103], # L3 [-0.1307, -0.1874, -0.7445], # L4 ], dtype=sample.dtype, device=sample.device, ) image = sample_to_lowres_estimated_image(sample, v1_5_latent_rgb_factors) (width, height) = image.size width *= 8 height *= 8 dataURL = image_to_dataURL(image, image_format="JPEG") context.services.events.emit_generator_progress( graph_execution_state_id=context.graph_execution_state_id, node=node, source_node_id=source_node_id, progress_image=ProgressImage(width=width, height=height, dataURL=dataURL), step=intermediate_state.step, order=intermediate_state.order, total_steps=intermediate_state.total_steps, )