FROM arm64v8/debian ARG gsd ENV GITHUB_STABLE_DIFFUSION $gsd ARG sdreq="requirements-linux-arm64.txt" ENV SD_REQ $sdreq WORKDIR / # TODO: Optimize image size COPY entrypoint.sh anaconda.sh . SHELL ["/bin/bash", "-c"] # Update and apt 446 MB RUN apt update && apt upgrade -y \ && apt install -y \ git \ pip \ python3 \ wget # install Anaconda or Miniconda 610 MB RUN bash anaconda.sh -b -u -p /anaconda && /anaconda/bin/conda init bash # SD repo 105 MB RUN git clone $GITHUB_STABLE_DIFFUSION WORKDIR /stable-diffusion # SD env 2.3 GB !!! RUN PIP_EXISTS_ACTION="w" \ # restrict the Conda environment to only use ARM packages. M1/M2 is ARM-based. You could also conda install nomkl. && CONDA_SUBDIR="osx-arm64" \ # Create the environment, activate it, install requirements. && source ~/.bashrc && conda create -y --name ldm && conda activate ldm \ && pip3 install -r $SD_REQ \ && mkdir models/ldm/stable-diffusion-v1 # Face restoration prerequisites 200 MB RUN apt install -y libgl1-mesa-glx libglib2.0-0 WORKDIR / # Face restoreation repo 12 MB # by default expected in a sibling directory to stable-diffusion RUN git clone https://github.com/TencentARC/GFPGAN.git WORKDIR /GFPGAN # Face restoration env 608 MB RUN pip3 install basicsr facexlib \ && pip3 install -r requirements.txt \ && python3 setup.py develop \ # to enhance the background (non-face) regions and do upscaling && pip3 install realesrgan \ # pre-trained model needed for face restoration && wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P experiments/pretrained_models WORKDIR /stable-diffusion # Preload models 2 GB RUN python3 scripts/preload_models.py ENTRYPOINT ["/entrypoint.sh"]