#!/usr/bin/env python3 # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) import os import re import sys import shlex import copy import warnings import time sys.path.append('.') # corrects a weird problem on Macs from ldm.dream.readline import get_completer from ldm.dream.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png from ldm.dream.pngwriter import PngWriter from ldm.dream.image_util import make_grid from ldm.dream.log import write_log from omegaconf import OmegaConf from backend.invoke_ai_web_server import InvokeAIWebServer def main(): """Initialize command-line parsers and the diffusion model""" opt = Args() args = opt.parse_args() if not args: sys.exit(-1) if args.laion400m: print('--laion400m flag has been deprecated. Please use --model laion400m instead.') sys.exit(-1) if args.weights: print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.') sys.exit(-1) print('* Initializing, be patient...\n') from ldm.generate import Generate # these two lines prevent a horrible warning message from appearing # when the frozen CLIP tokenizer is imported import transformers transformers.logging.set_verbosity_error() # Loading Face Restoration and ESRGAN Modules try: gfpgan, codeformer, esrgan = None, None, None if opt.restore or opt.esrgan: from ldm.dream.restoration import Restoration restoration = Restoration() if opt.restore: gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_dir, opt.gfpgan_model_path) else: print('>> Face restoration disabled') if opt.esrgan: esrgan = restoration.load_esrgan(opt.esrgan_bg_tile) else: print('>> Upscaling disabled') else: print('>> Face restoration and upscaling disabled') except (ModuleNotFoundError, ImportError): import traceback print(traceback.format_exc(), file=sys.stderr) print('>> You may need to install the ESRGAN and/or GFPGAN modules') # creating a simple text2image object with a handful of # defaults passed on the command line. # additional parameters will be added (or overriden) during # the user input loop try: gen = Generate( conf = opt.conf, model = opt.model, sampler_name = opt.sampler_name, embedding_path = opt.embedding_path, full_precision = opt.full_precision, precision = opt.precision, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan ) except (FileNotFoundError, IOError, KeyError) as e: print(f'{e}. Aborting.') sys.exit(-1) # make sure the output directory exists if not os.path.exists(opt.outdir): os.makedirs(opt.outdir) # load the infile as a list of lines infile = None if opt.infile: try: if os.path.isfile(opt.infile): infile = open(opt.infile, 'r', encoding='utf-8') elif opt.infile == '-': # stdin infile = sys.stdin else: raise FileNotFoundError(f'{opt.infile} not found.') except (FileNotFoundError, IOError) as e: print(f'{e}. Aborting.') sys.exit(-1) if opt.seamless: print(">> changed to seamless tiling mode") # preload the model gen.load_model() #set additional option gen.free_gpu_mem = opt.free_gpu_mem # web server loops forever if opt.web: invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan) sys.exit(0) if not infile: print( "\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)" ) main_loop(gen, opt, infile) # TODO: main_loop() has gotten busy. Needs to be refactored. def main_loop(gen, opt, infile): """prompt/read/execute loop""" done = False path_filter = re.compile(r'[<>:"/\\|?*]') last_results = list() model_config = OmegaConf.load(opt.conf)[opt.model] # The readline completer reads history from the .dream_history file located in the # output directory specified at the time of script launch. We do not currently support # changing the history file midstream when the output directory is changed. completer = get_completer(opt) output_cntr = completer.get_current_history_length()+1 # os.pathconf is not available on Windows if hasattr(os, 'pathconf'): path_max = os.pathconf(opt.outdir, 'PC_PATH_MAX') name_max = os.pathconf(opt.outdir, 'PC_NAME_MAX') else: path_max = 260 name_max = 255 while not done: operation = 'generate' # default operation, alternative is 'postprocess' if completer: completer.set_default_dir(opt.outdir) try: command = get_next_command(infile) except EOFError: done = True continue # skip empty lines if not command.strip(): continue if command.startswith(('#', '//')): continue if len(command.strip()) == 1 and command.startswith('q'): done = True break if command.startswith('!'): subcommand = command[1:] if subcommand.startswith('dream'): # in case a stored prompt still contains the !dream command command = command.replace('!dream ','',1) elif subcommand.startswith('fix'): command = command.replace('!fix ','',1) operation = 'postprocess' elif subcommand.startswith('fetch'): file_path = command.replace('!fetch ','',1) retrieve_dream_command(opt,file_path,completer) continue elif subcommand.startswith('history'): completer.show_history() continue elif re.match('^(\d+)',subcommand): command_no = re.match('^(\d+)',subcommand).groups()[0] command = completer.get_line(int(command_no)) completer.set_line(command) continue else: # not a recognized subcommand, so give the --help text command = '-h' if opt.parse_cmd(command) is None: continue if opt.init_img: try: if not opt.prompt: oldargs = metadata_from_png(opt.init_img) opt.prompt = oldargs.prompt print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}') except AttributeError: pass except KeyError: pass if len(opt.prompt) == 0: print('\nTry again with a prompt!') continue # width and height are set by model if not specified if not opt.width: opt.width = model_config.width if not opt.height: opt.height = model_config.height # retrieve previous value of init image if requested if opt.init_img is not None and re.match('^-\\d+$', opt.init_img): try: opt.init_img = last_results[int(opt.init_img)][0] print(f'>> Reusing previous image {opt.init_img}') except IndexError: print( f'>> No previous initial image at position {opt.init_img} found') opt.init_img = None continue # try to relativize pathnames for attr in ('init_img','init_mask','init_color','embedding_path'): if getattr(opt,attr) and not os.path.exists(getattr(opt,attr)): basename = getattr(opt,attr) path = os.path.join(opt.outdir,basename) setattr(opt,attr,path) # retrieve previous valueof seed if requested if opt.seed is not None and opt.seed < 0: try: opt.seed = last_results[opt.seed][1] print(f'>> Reusing previous seed {opt.seed}') except IndexError: print(f'>> No previous seed at position {opt.seed} found') opt.seed = None continue if opt.strength is None: opt.strength = 0.75 if opt.out_direction is None else 0.83 if opt.with_variations is not None: opt.with_variations = split_variations(opt.with_variations) if opt.prompt_as_dir: # sanitize the prompt to a valid folder name subdir = path_filter.sub('_', opt.prompt)[:name_max].rstrip(' .') # truncate path to maximum allowed length # 39 is the length of '######.##########.##########-##.png', plus two separators and a NUL subdir = subdir[:(path_max - 39 - len(os.path.abspath(opt.outdir)))] current_outdir = os.path.join(opt.outdir, subdir) print('Writing files to directory: "' + current_outdir + '"') # make sure the output directory exists if not os.path.exists(current_outdir): os.makedirs(current_outdir) else: if not os.path.exists(opt.outdir): os.makedirs(opt.outdir) current_outdir = opt.outdir # Here is where the images are actually generated! last_results = [] try: file_writer = PngWriter(current_outdir) results = [] # list of filename, prompt pairs grid_images = dict() # seed -> Image, only used if `opt.grid` prior_variations = opt.with_variations or [] prefix = file_writer.unique_prefix() def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None): print(f'DEBUG:upscaled={upscaled}, first_seed={first_seed}, use_prefix={use_prefix}') # note the seed is the seed of the current image # the first_seed is the original seed that noise is added to # when the -v switch is used to generate variations nonlocal prior_variations nonlocal prefix if use_prefix is not None: prefix = use_prefix path = None if opt.grid: grid_images[seed] = image else: postprocessed = upscaled if upscaled else operation=='postprocess' filename, formatted_dream_prompt = prepare_image_metadata( opt, prefix, seed, operation, prior_variations, postprocessed, first_seed ) path = file_writer.save_image_and_prompt_to_png( image = image, dream_prompt = formatted_dream_prompt, metadata = metadata_dumps( opt, seeds = [seed], model_hash = gen.model_hash, ), name = filename, ) if (not upscaled) or opt.save_original: # only append to results if we didn't overwrite an earlier output results.append([path, formatted_dream_prompt]) # so that the seed autocompletes (on linux|mac when -S or --seed specified if completer: completer.add_seed(seed) completer.add_seed(first_seed) last_results.append([path, seed]) if operation == 'generate': catch_ctrl_c = infile is None # if running interactively, we catch keyboard interrupts opt.last_operation='generate' gen.prompt2image( image_callback=image_writer, catch_interrupts=catch_ctrl_c, **vars(opt) ) elif operation == 'postprocess': print(f'>> fixing {opt.prompt}') opt.last_operation = do_postprocess(gen,opt,image_writer) if opt.grid and len(grid_images) > 0: grid_img = make_grid(list(grid_images.values())) grid_seeds = list(grid_images.keys()) first_seed = last_results[0][1] filename = f'{prefix}.{first_seed}.png' formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images)) formatted_dream_prompt += f' # {grid_seeds}' metadata = metadata_dumps( opt, seeds = grid_seeds, model_hash = gen.model_hash ) path = file_writer.save_image_and_prompt_to_png( image = grid_img, dream_prompt = formatted_dream_prompt, metadata = metadata, name = filename ) results = [[path, formatted_dream_prompt]] except AssertionError as e: print(e) continue except OSError as e: print(e) continue print('Outputs:') log_path = os.path.join(current_outdir, 'dream_log') output_cntr = write_log(results, log_path ,('txt', 'md'), output_cntr) print() if operation == 'postprocess': completer.add_history(f'!fix {command}') else: completer.add_history(command) print('goodbye!') def do_postprocess (gen, opt, callback): file_path = opt.prompt # treat the prompt as the file pathname if os.path.dirname(file_path) == '': #basename given file_path = os.path.join(opt.outdir,file_path) if not os.path.exists(file_path): print(f'* file {file_path} does not exist') return tool=None if opt.gfpgan_strength > 0: tool = opt.facetool elif opt.embiggen: tool = 'embiggen' elif opt.upscale: tool = 'upscale' elif opt.out_direction: tool = 'outpaint' opt.save_original = True # do not overwrite old image! opt.last_operation = f'postprocess:{tool}' gen.apply_postprocessor( image_path = file_path, tool = tool, gfpgan_strength = opt.gfpgan_strength, codeformer_fidelity = opt.codeformer_fidelity, save_original = opt.save_original, upscale = opt.upscale, out_direction = opt.out_direction, callback = callback, opt = opt, ) return opt.last_operation def prepare_image_metadata( opt, prefix, seed, operation='generate', prior_variations=[], postprocessed=False, first_seed=None ): if postprocessed and opt.save_original: filename = choose_postprocess_name(opt,prefix,seed) else: filename = f'{prefix}.{seed}.png' if opt.variation_amount > 0: first_seed = first_seed or seed this_variation = [[seed, opt.variation_amount]] opt.with_variations = prior_variations + this_variation formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed) elif len(prior_variations) > 0: formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed) elif operation == 'postprocess': formatted_dream_prompt = '!fix '+opt.dream_prompt_str(seed=seed) else: formatted_dream_prompt = opt.dream_prompt_str(seed=seed) return filename,formatted_dream_prompt def choose_postprocess_name(opt,prefix,seed) -> str: match = re.search('postprocess:(\w+)',opt.last_operation) if match: modifier = match.group(1) # will look like "gfpgan", "upscale", "outpaint" or "embiggen" else: modifier = 'postprocessed' counter = 0 filename = None available = False while not available: if counter == 0: filename = f'{prefix}.{seed}.{modifier}.png' else: filename = f'{prefix}.{seed}.{modifier}-{counter:02d}.png' available = not os.path.exists(os.path.join(opt.outdir,filename)) counter += 1 return filename def get_next_command(infile=None) -> str: # command string if infile is None: command = input('dream> ') else: command = infile.readline() if not command: raise EOFError else: command = command.strip() if len(command)>0: print(f'#{command}') return command def invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan): print('\n* --web was specified, starting web server...') # Change working directory to the stable-diffusion directory os.chdir( os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) ) invoke_ai_web_server = InvokeAIWebServer(generate=gen, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan) try: invoke_ai_web_server.run() except KeyboardInterrupt: pass def split_variations(variations_string) -> list: # shotgun parsing, woo parts = [] broken = False # python doesn't have labeled loops... for part in variations_string.split(','): seed_and_weight = part.split(':') if len(seed_and_weight) != 2: print(f'** Could not parse with_variation part "{part}"') broken = True break try: seed = int(seed_and_weight[0]) weight = float(seed_and_weight[1]) except ValueError: print(f'** Could not parse with_variation part "{part}"') broken = True break parts.append([seed, weight]) if broken: return None elif len(parts) == 0: return None else: return parts def retrieve_dream_command(opt,file_path,completer): ''' Given a full or partial path to a previously-generated image file, will retrieve and format the dream command used to generate the image, and pop it into the readline buffer (linux, Mac), or print out a comment for cut-and-paste (windows) ''' dir,basename = os.path.split(file_path) if len(dir) == 0: path = os.path.join(opt.outdir,basename) else: path = file_path try: cmd = dream_cmd_from_png(path) except FileNotFoundError: print(f'** {path}: file not found') return completer.set_line(cmd) if __name__ == '__main__': main()