import argparse, os, sys, glob import clip import torch import torch.nn as nn import numpy as np from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm, trange from itertools import islice from einops import rearrange, repeat from torchvision.utils import make_grid import scann import time from multiprocessing import cpu_count from ldm.util import instantiate_from_config, parallel_data_prefetch from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from ldm.modules.encoders.modules import FrozenClipImageEmbedder, FrozenCLIPTextEmbedder DATABASES = [ "openimages", "artbench-art_nouveau", "artbench-baroque", "artbench-expressionism", "artbench-impressionism", "artbench-post_impressionism", "artbench-realism", "artbench-romanticism", "artbench-renaissance", "artbench-surrealism", "artbench-ukiyo_e", ] def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model class Searcher(object): def __init__(self, database, retriever_version="ViT-L/14"): assert database in DATABASES # self.database = self.load_database(database) self.database_name = database self.searcher_savedir = f"data/rdm/searchers/{self.database_name}" self.database_path = f"data/rdm/retrieval_databases/{self.database_name}" self.retriever = self.load_retriever(version=retriever_version) self.database = {"embedding": [], "img_id": [], "patch_coords": []} self.load_database() self.load_searcher() def train_searcher(self, k, metric="dot_product", searcher_savedir=None): print("Start training searcher") searcher = scann.scann_ops_pybind.builder( self.database["embedding"] / np.linalg.norm(self.database["embedding"], axis=1)[:, np.newaxis], k, metric ) self.searcher = searcher.score_brute_force().build() print("Finish training searcher") if searcher_savedir is not None: print(f'Save trained searcher under "{searcher_savedir}"') os.makedirs(searcher_savedir, exist_ok=True) self.searcher.serialize(searcher_savedir) def load_single_file(self, saved_embeddings): compressed = np.load(saved_embeddings) self.database = {key: compressed[key] for key in compressed.files} print("Finished loading of clip embeddings.") def load_multi_files(self, data_archive): out_data = {key: [] for key in self.database} for d in tqdm(data_archive, desc=f"Loading datapool from {len(data_archive)} individual files."): for key in d.files: out_data[key].append(d[key]) return out_data def load_database(self): print(f'Load saved patch embedding from "{self.database_path}"') file_content = glob.glob(os.path.join(self.database_path, "*.npz")) if len(file_content) == 1: self.load_single_file(file_content[0]) elif len(file_content) > 1: data = [np.load(f) for f in file_content] prefetched_data = parallel_data_prefetch( self.load_multi_files, data, n_proc=min(len(data), cpu_count()), target_data_type="dict" ) self.database = { key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in self.database } else: raise ValueError(f'No npz-files in specified path "{self.database_path}" is this directory existing?') print(f'Finished loading of retrieval database of length {self.database["embedding"].shape[0]}.') def load_retriever( self, version="ViT-L/14", ): model = FrozenClipImageEmbedder(model=version) if torch.cuda.is_available(): model.cuda() model.eval() return model def load_searcher(self): print(f"load searcher for database {self.database_name} from {self.searcher_savedir}") self.searcher = scann.scann_ops_pybind.load_searcher(self.searcher_savedir) print("Finished loading searcher.") def search(self, x, k): if self.searcher is None and self.database["embedding"].shape[0] < 2e4: self.train_searcher(k) # quickly fit searcher on the fly for small databases assert self.searcher is not None, "Cannot search with uninitialized searcher" if isinstance(x, torch.Tensor): x = x.detach().cpu().numpy() if len(x.shape) == 3: x = x[:, 0] query_embeddings = x / np.linalg.norm(x, axis=1)[:, np.newaxis] start = time.time() nns, distances = self.searcher.search_batched(query_embeddings, final_num_neighbors=k) end = time.time() out_embeddings = self.database["embedding"][nns] out_img_ids = self.database["img_id"][nns] out_pc = self.database["patch_coords"][nns] out = { "nn_embeddings": out_embeddings / np.linalg.norm(out_embeddings, axis=-1)[..., np.newaxis], "img_ids": out_img_ids, "patch_coords": out_pc, "queries": x, "exec_time": end - start, "nns": nns, "q_embeddings": query_embeddings, } return out def __call__(self, x, n): return self.search(x, n) if __name__ == "__main__": parser = argparse.ArgumentParser() # TODO: add n_neighbors and modes (text-only, text-image-retrieval, image-image retrieval etc) # TODO: add 'image variation' mode when knn=0 but a single image is given instead of a text prompt? parser.add_argument( "--prompt", type=str, nargs="?", default="a painting of a virus monster playing guitar", help="the prompt to render", ) parser.add_argument( "--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples" ) parser.add_argument( "--skip_grid", action="store_true", help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", ) parser.add_argument( "--ddim_steps", type=int, default=50, help="number of ddim sampling steps", ) parser.add_argument( "--n_repeat", type=int, default=1, help="number of repeats in CLIP latent space", ) parser.add_argument( "--plms", action="store_true", help="use plms sampling", ) parser.add_argument( "--ddim_eta", type=float, default=0.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling", ) parser.add_argument( "--n_iter", type=int, default=1, help="sample this often", ) parser.add_argument( "--H", type=int, default=768, help="image height, in pixel space", ) parser.add_argument( "--W", type=int, default=768, help="image width, in pixel space", ) parser.add_argument( "--n_samples", type=int, default=3, help="how many samples to produce for each given prompt. A.k.a batch size", ) parser.add_argument( "--n_rows", type=int, default=0, help="rows in the grid (default: n_samples)", ) parser.add_argument( "--scale", type=float, default=5.0, help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", ) parser.add_argument( "--from-file", type=str, help="if specified, load prompts from this file", ) parser.add_argument( "--config", type=str, default="configs/retrieval-augmented-diffusion/768x768.yaml", help="path to config which constructs model", ) parser.add_argument( "--ckpt", type=str, default="models/rdm/rdm768x768/model.ckpt", help="path to checkpoint of model", ) parser.add_argument( "--clip_type", type=str, default="ViT-L/14", help="which CLIP model to use for retrieval and NN encoding", ) parser.add_argument( "--database", type=str, default="artbench-surrealism", choices=DATABASES, help="The database used for the search, only applied when --use_neighbors=True", ) parser.add_argument( "--use_neighbors", default=False, action="store_true", help="Include neighbors in addition to text prompt for conditioning", ) parser.add_argument( "--knn", default=10, type=int, help="The number of included neighbors, only applied when --use_neighbors=True", ) opt = parser.parse_args() config = OmegaConf.load(f"{opt.config}") model = load_model_from_config(config, f"{opt.ckpt}") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) clip_text_encoder = FrozenCLIPTextEmbedder(opt.clip_type).to(device) if opt.plms: sampler = PLMSSampler(model) else: sampler = DDIMSampler(model) os.makedirs(opt.outdir, exist_ok=True) outpath = opt.outdir batch_size = opt.n_samples n_rows = opt.n_rows if opt.n_rows > 0 else batch_size if not opt.from_file: prompt = opt.prompt assert prompt is not None data = [batch_size * [prompt]] else: print(f"reading prompts from {opt.from_file}") with open(opt.from_file, "r") as f: data = f.read().splitlines() data = list(chunk(data, batch_size)) sample_path = os.path.join(outpath, "samples") os.makedirs(sample_path, exist_ok=True) base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 print(f"sampling scale for cfg is {opt.scale:.2f}") searcher = None if opt.use_neighbors: searcher = Searcher(opt.database) with torch.no_grad(): with model.ema_scope(): for n in trange(opt.n_iter, desc="Sampling"): all_samples = list() for prompts in tqdm(data, desc="data"): print("sampling prompts:", prompts) if isinstance(prompts, tuple): prompts = list(prompts) c = clip_text_encoder.encode(prompts) uc = None if searcher is not None: nn_dict = searcher(c, opt.knn) c = torch.cat([c, torch.from_numpy(nn_dict["nn_embeddings"]).cuda()], dim=1) if opt.scale != 1.0: uc = torch.zeros_like(c) if isinstance(prompts, tuple): prompts = list(prompts) shape = [16, opt.H // 16, opt.W // 16] # note: currently hardcoded for f16 model samples_ddim, _ = sampler.sample( S=opt.ddim_steps, conditioning=c, batch_size=c.shape[0], shape=shape, verbose=False, unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, eta=opt.ddim_eta, ) x_samples_ddim = model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) for x_sample in x_samples_ddim: x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c") Image.fromarray(x_sample.astype(np.uint8)).save( os.path.join(sample_path, f"{base_count:05}.png") ) base_count += 1 all_samples.append(x_samples_ddim) if not opt.skip_grid: # additionally, save as grid grid = torch.stack(all_samples, 0) grid = rearrange(grid, "n b c h w -> (n b) c h w") grid = make_grid(grid, nrow=n_rows) # to image grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy() Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png")) grid_count += 1 print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")