import secrets import warnings from dataclasses import dataclass from typing import List, Optional, Union, Callable import torch from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer @dataclass class PipelineIntermediateState: run_id: str step: int timestep: int latents: torch.Tensor predicted_original: Optional[torch.Tensor] = None class StableDiffusionGeneratorPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline. Hopefully future versions of diffusers provide access to more of these functions so that we don't need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384 Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offsensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ ID_LENGTH = 8 def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `attention slicing` self.enable_attention_slicing(None) def enable_xformers_memory_efficient_attention(self): r""" Enable memory efficient attention as implemented in xformers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference time. Speed up at training time is not guaranteed. Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention is used. """ self.unet.set_use_memory_efficient_attention_xformers(True) def disable_xformers_memory_efficient_attention(self): r""" Disable memory efficient attention as implemented in xformers. """ self.unet.set_use_memory_efficient_attention_xformers(False) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, callback: Optional[Callable[[PipelineIntermediateState], None]] = None, **extra_step_kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ result = None for result in self.generate( prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator, latents=latents, **extra_step_kwargs): if callback is not None: callback(result) if result is None: raise AssertionError("why was that an empty generator?") return result def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int, text_embeddings: torch.Tensor, guidance_scale: float, *, callback: Callable[[PipelineIntermediateState], None]=None, run_id=None, **extra_step_kwargs) -> StableDiffusionPipelineOutput: self.scheduler.set_timesteps(num_inference_steps) result = None for result in self.generate_from_embeddings( latents, text_embeddings, guidance_scale, run_id, **extra_step_kwargs): if callback is not None: callback(result) if result is None: raise AssertionError("why was that an empty generator?") return result def generate( self, prompt: Union[str, List[str]], *, opposing_prompt: Union[str, List[str]] = None, height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, run_id: str = None, **extra_step_kwargs, ): if isinstance(prompt, str): batch_size = 1 else: batch_size = len(prompt) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 text_embeddings = self.get_text_embeddings(prompt, opposing_prompt, do_classifier_free_guidance, batch_size)\ .to(self.unet.device) self.scheduler.set_timesteps(num_inference_steps) latents = self.prepare_latents(latents, batch_size, height, width, generator, self.unet.dtype) yield from self.generate_from_embeddings(latents, text_embeddings, guidance_scale, run_id, **extra_step_kwargs) def generate_from_embeddings(self, latents: torch.Tensor, text_embeddings: torch.Tensor, guidance_scale: float, run_id: str = None, **extra_step_kwargs): if run_id is None: run_id = secrets.token_urlsafe(self.ID_LENGTH) # scale the initial noise by the standard deviation required by the scheduler latents *= self.scheduler.init_noise_sigma yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps, latents=latents) # NOTE: Depends on scheduler being already initialized! for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): step_output = self.step(t, latents, guidance_scale, text_embeddings, **extra_step_kwargs) latents = step_output.prev_sample predicted_original = getattr(step_output, 'pred_original_sample', None) yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents, predicted_original=predicted_original) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() image = self.decode_to_image(latents) output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[]) yield self.check_for_safety(output) @torch.inference_mode() def step(self, t, latents: torch.Tensor, guidance_scale, text_embeddings: torch.Tensor, **extra_step_kwargs): do_classifier_free_guidance = guidance_scale > 1.0 # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 return self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs) @torch.inference_mode() def check_for_safety(self, output): if not getattr(self, 'feature_extractor') or not getattr(self, 'safety_checker'): return output images = output.images safety_checker_output = self.feature_extractor(self.numpy_to_pil(images), return_tensors="pt").to(self.device) screened_images, has_nsfw_concept = self.safety_checker( images=images, clip_input=safety_checker_output.pixel_values) return StableDiffusionPipelineOutput(screened_images, has_nsfw_concept) @torch.inference_mode() def decode_to_image(self, latents): # scale and decode the image latents with vae latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() return image @torch.inference_mode() def get_text_embeddings(self, prompt: Union[str, List[str]], opposing_prompt: Union[str, List[str]], do_classifier_free_guidance: bool, batch_size: int): # get prompt text embeddings text_input = self._tokenize(prompt) text_embeddings = self.text_encoder(text_input.input_ids)[0] # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: # opposing prompt defaults to blank caption for everything in the batch text_anti_input = self._tokenize(opposing_prompt or [""] * batch_size) uncond_embeddings = self.text_encoder(text_anti_input.input_ids)[0] # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes # FIXME: assert these two are the same size text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) return text_embeddings def get_learned_conditioning(self, c: List[List[str]], return_tokens=True, fragment_weights=None, **kwargs): """ Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion. """ assert return_tokens == True if fragment_weights: weights = fragment_weights[0] if any(weight != 1.0 for weight in weights): warnings.warn(f"fragment weights not implemented yet {fragment_weights}", stacklevel=2) if kwargs: warnings.warn(f"unsupported args {kwargs}", stacklevel=2) text_fragments = c[0] text_input = self._tokenize(text_fragments) with torch.inference_mode(): token_ids = text_input.input_ids.to(self.text_encoder.device) text_embeddings = self.text_encoder(token_ids)[0] return text_embeddings, text_input.input_ids @torch.inference_mode() def _tokenize(self, prompt: Union[str, List[str]]): return self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) @property def channels(self) -> int: """Compatible with DiffusionWrapper""" return self.unet.in_channels def prepare_latents(self, latents, batch_size, height, width, generator, dtype): # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8) if latents is None: latents = torch.randn( latents_shape, generator=generator, device=self.unet.device, dtype=dtype ) else: if latents.shape != latents_shape: raise ValueError( f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") if latents.device != self.unet.device: raise ValueError(f"Unexpected latents device, got {latents.device}, " f"expected {self.unet.device}") # scale the initial noise by the standard deviation required by the scheduler latents *= self.scheduler.init_noise_sigma return latents