''' ldm.invoke.generator.img2img descends from ldm.invoke.generator ''' import PIL import numpy as np import torch from PIL import Image from torch import Tensor from ldm.invoke.devices import choose_autocast from ldm.invoke.generator.base import Generator class Img2Img(Generator): def __init__(self, model, precision): super().__init__(model, precision) self.init_latent = None # by get_noise() def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta, conditioning,init_image,strength,step_callback=None,threshold=0.0,perlin=0.0,**kwargs): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it. """ self.perlin = perlin sampler.make_schedule( ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False ) if isinstance(init_image, PIL.Image.Image): init_image = self._image_to_tensor(init_image.convert('RGB')) scope = choose_autocast(self.precision) with scope(self.model.device.type): self.init_latent = self.model.get_first_stage_encoding( self.model.encode_first_stage(init_image) ) # move to latent space t_enc = int(strength * steps) uc, c, extra_conditioning_info = conditioning def make_image(x_T): # encode (scaled latent) z_enc = sampler.stochastic_encode( self.init_latent, torch.tensor([t_enc]).to(self.model.device), noise=x_T ) # decode it samples = sampler.decode( z_enc, c, t_enc, img_callback = step_callback, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, init_latent = self.init_latent, # changes how noising is performed in ksampler extra_conditioning_info = extra_conditioning_info, all_timesteps_count = steps ) return self.sample_to_image(samples) return make_image def get_noise(self,width,height): device = self.model.device init_latent = self.init_latent assert init_latent is not None,'call to get_noise() when init_latent not set' if device.type == 'mps': x = torch.randn_like(init_latent, device='cpu').to(device) else: x = torch.randn_like(init_latent, device=device) if self.perlin > 0.0: shape = init_latent.shape x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2]) return x def _image_to_tensor(self, image:Image, normalize:bool=True)->Tensor: image = np.array(image).astype(np.float32) / 255.0 if len(image.shape) == 2: # 'L' image, as in a mask image = image[None,None] else: # 'RGB' image image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) if normalize: image = 2.0 * image - 1.0 return image.to(self.model.device)