import copy from typing import List, Literal, Optional from pydantic import BaseModel, Field from ...backend.model_management import BaseModelType, ModelType, SubModelType from .baseinvocation import ( BaseInvocation, BaseInvocationOutput, FieldDescriptions, InputField, Input, InvocationContext, OutputField, UIType, tags, title, ) class ModelInfo(BaseModel): model_name: str = Field(description="Info to load submodel") base_model: BaseModelType = Field(description="Base model") model_type: ModelType = Field(description="Info to load submodel") submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel") class LoraInfo(ModelInfo): weight: float = Field(description="Lora's weight which to use when apply to model") class UNetField(BaseModel): unet: ModelInfo = Field(description="Info to load unet submodel") scheduler: ModelInfo = Field(description="Info to load scheduler submodel") loras: List[LoraInfo] = Field(description="Loras to apply on model loading") seamless_axes: List[str] = Field(default_factory=list, description="Axes(\"x\" and \"y\") to which apply seamless") class ClipField(BaseModel): tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel") text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel") skipped_layers: int = Field(description="Number of skipped layers in text_encoder") loras: List[LoraInfo] = Field(description="Loras to apply on model loading") class VaeField(BaseModel): # TODO: better naming? vae: ModelInfo = Field(description="Info to load vae submodel") seamless_axes: List[str] = Field(default_factory=list, description="Axes(\"x\" and \"y\") to which apply seamless") class ModelLoaderOutput(BaseInvocationOutput): """Model loader output""" type: Literal["model_loader_output"] = "model_loader_output" unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet") clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP") vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE") class MainModelField(BaseModel): """Main model field""" model_name: str = Field(description="Name of the model") base_model: BaseModelType = Field(description="Base model") model_type: ModelType = Field(description="Model Type") class LoRAModelField(BaseModel): """LoRA model field""" model_name: str = Field(description="Name of the LoRA model") base_model: BaseModelType = Field(description="Base model") @title("Main Model") @tags("model") class MainModelLoaderInvocation(BaseInvocation): """Loads a main model, outputting its submodels.""" type: Literal["main_model_loader"] = "main_model_loader" # Inputs model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct) # TODO: precision? def invoke(self, context: InvocationContext) -> ModelLoaderOutput: base_model = self.model.base_model model_name = self.model.model_name model_type = ModelType.Main # TODO: not found exceptions if not context.services.model_manager.model_exists( model_name=model_name, base_model=base_model, model_type=model_type, ): raise Exception(f"Unknown {base_model} {model_type} model: {model_name}") """ if not context.services.model_manager.model_exists( model_name=self.model_name, model_type=SDModelType.Diffusers, submodel=SDModelType.Tokenizer, ): raise Exception( f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted" ) if not context.services.model_manager.model_exists( model_name=self.model_name, model_type=SDModelType.Diffusers, submodel=SDModelType.TextEncoder, ): raise Exception( f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted" ) if not context.services.model_manager.model_exists( model_name=self.model_name, model_type=SDModelType.Diffusers, submodel=SDModelType.UNet, ): raise Exception( f"Failed to find unet submodel from {self.model_name}! Check if model corrupted" ) """ return ModelLoaderOutput( unet=UNetField( unet=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.UNet, ), scheduler=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.Scheduler, ), loras=[], ), clip=ClipField( tokenizer=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.Tokenizer, ), text_encoder=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.TextEncoder, ), loras=[], skipped_layers=0, ), vae=VaeField( vae=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, submodel=SubModelType.Vae, ), ), ) class LoraLoaderOutput(BaseInvocationOutput): """Model loader output""" # fmt: off type: Literal["lora_loader_output"] = "lora_loader_output" unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet") clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP") # fmt: on @title("LoRA") @tags("lora", "model") class LoraLoaderInvocation(BaseInvocation): """Apply selected lora to unet and text_encoder.""" type: Literal["lora_loader"] = "lora_loader" # Inputs lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA") weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight) unet: Optional[UNetField] = InputField( default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet" ) clip: Optional[ClipField] = InputField( default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP" ) def invoke(self, context: InvocationContext) -> LoraLoaderOutput: if self.lora is None: raise Exception("No LoRA provided") base_model = self.lora.base_model lora_name = self.lora.model_name if not context.services.model_manager.model_exists( base_model=base_model, model_name=lora_name, model_type=ModelType.Lora, ): raise Exception(f"Unkown lora name: {lora_name}!") if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras): raise Exception(f'Lora "{lora_name}" already applied to unet') if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras): raise Exception(f'Lora "{lora_name}" already applied to clip') output = LoraLoaderOutput() if self.unet is not None: output.unet = copy.deepcopy(self.unet) output.unet.loras.append( LoraInfo( base_model=base_model, model_name=lora_name, model_type=ModelType.Lora, submodel=None, weight=self.weight, ) ) if self.clip is not None: output.clip = copy.deepcopy(self.clip) output.clip.loras.append( LoraInfo( base_model=base_model, model_name=lora_name, model_type=ModelType.Lora, submodel=None, weight=self.weight, ) ) return output class SDXLLoraLoaderOutput(BaseInvocationOutput): """SDXL LoRA Loader Output""" # fmt: off type: Literal["sdxl_lora_loader_output"] = "sdxl_lora_loader_output" unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet") clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1") clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2") # fmt: on @title("SDXL LoRA") @tags("sdxl", "lora", "model") class SDXLLoraLoaderInvocation(BaseInvocation): """Apply selected lora to unet and text_encoder.""" type: Literal["sdxl_lora_loader"] = "sdxl_lora_loader" lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA") weight: float = Field(default=0.75, description=FieldDescriptions.lora_weight) unet: Optional[UNetField] = Field( default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNET" ) clip: Optional[ClipField] = Field( default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1" ) clip2: Optional[ClipField] = Field( default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2" ) def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput: if self.lora is None: raise Exception("No LoRA provided") base_model = self.lora.base_model lora_name = self.lora.model_name if not context.services.model_manager.model_exists( base_model=base_model, model_name=lora_name, model_type=ModelType.Lora, ): raise Exception(f"Unknown lora name: {lora_name}!") if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras): raise Exception(f'Lora "{lora_name}" already applied to unet') if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras): raise Exception(f'Lora "{lora_name}" already applied to clip') if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras): raise Exception(f'Lora "{lora_name}" already applied to clip2') output = SDXLLoraLoaderOutput() if self.unet is not None: output.unet = copy.deepcopy(self.unet) output.unet.loras.append( LoraInfo( base_model=base_model, model_name=lora_name, model_type=ModelType.Lora, submodel=None, weight=self.weight, ) ) if self.clip is not None: output.clip = copy.deepcopy(self.clip) output.clip.loras.append( LoraInfo( base_model=base_model, model_name=lora_name, model_type=ModelType.Lora, submodel=None, weight=self.weight, ) ) if self.clip2 is not None: output.clip2 = copy.deepcopy(self.clip2) output.clip2.loras.append( LoraInfo( base_model=base_model, model_name=lora_name, model_type=ModelType.Lora, submodel=None, weight=self.weight, ) ) return output class VAEModelField(BaseModel): """Vae model field""" model_name: str = Field(description="Name of the model") base_model: BaseModelType = Field(description="Base model") class VaeLoaderOutput(BaseInvocationOutput): """Model loader output""" type: Literal["vae_loader_output"] = "vae_loader_output" # Outputs vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE") @title("VAE") @tags("vae", "model") class VaeLoaderInvocation(BaseInvocation): """Loads a VAE model, outputting a VaeLoaderOutput""" type: Literal["vae_loader"] = "vae_loader" # Inputs vae_model: VAEModelField = InputField( description=FieldDescriptions.vae_model, input=Input.Direct, ui_type=UIType.VaeModel, title="VAE" ) def invoke(self, context: InvocationContext) -> VaeLoaderOutput: base_model = self.vae_model.base_model model_name = self.vae_model.model_name model_type = ModelType.Vae if not context.services.model_manager.model_exists( base_model=base_model, model_name=model_name, model_type=model_type, ): raise Exception(f"Unkown vae name: {model_name}!") return VaeLoaderOutput( vae=VaeField( vae=ModelInfo( model_name=model_name, base_model=base_model, model_type=model_type, ) ) ) class SeamlessModeOutput(BaseInvocationOutput): """Modified Seamless Model output""" type: Literal["seamless_output"] = "seamless_output" # Outputs unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet") vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE") @title("Seamless") @tags("seamless", "model") class SeamlessModeInvocation(BaseInvocation): """Applies the seamless transformation to the Model UNet and VAE.""" type: Literal["seamless"] = "seamless" # Inputs unet: UNetField = InputField( description=FieldDescriptions.unet, input=Input.Connection, title="UNet" ) vae: VaeField = InputField( description=FieldDescriptions.vae_model, input=Input.Any, title="VAE" ) seamless_y: bool = InputField(default=True, input=Input.Any, description="Specify whether Y axis is seamless") seamless_x: bool = InputField(default=True, input=Input.Any, description="Specify whether X axis is seamless") def invoke(self, context: InvocationContext) -> SeamlessModeOutput: # Conditionally append 'x' and 'y' based on seamless_x and seamless_y unet = copy.deepcopy(self.unet) vae = copy.deepcopy(self.vae) seamless_axes_list = [] if self.seamless_x: seamless_axes_list.append('x') if self.seamless_y: seamless_axes_list.append('y') unet.seamless_axes = seamless_axes_list vae.seamless_axes = seamless_axes_list return SeamlessModeOutput( unet=unet, vae=vae )