from __future__ import annotations from contextlib import contextmanager from dataclasses import dataclass from typing import TYPE_CHECKING, Callable, Dict, List import torch from diffusers import UNet2DConditionModel if TYPE_CHECKING: from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType @dataclass class CallbackMetadata: callback_type: ExtensionCallbackType order: int @dataclass class CallbackFunctionWithMetadata: metadata: CallbackMetadata function: Callable[[DenoiseContext], None] def callback(callback_type: ExtensionCallbackType, order: int = 0): def _decorator(function): function._ext_metadata = CallbackMetadata( callback_type=callback_type, order=order, ) return function return _decorator class ExtensionBase: def __init__(self): self._callbacks: Dict[ExtensionCallbackType, List[CallbackFunctionWithMetadata]] = {} # Register all of the callback methods for this instance. for func_name in dir(self): func = getattr(self, func_name) metadata = getattr(func, "_ext_metadata", None) if metadata is not None and isinstance(metadata, CallbackMetadata): if metadata.callback_type not in self._callbacks: self._callbacks[metadata.callback_type] = [] self._callbacks[metadata.callback_type].append(CallbackFunctionWithMetadata(metadata, func)) def get_callbacks(self): return self._callbacks @contextmanager def patch_extension(self, ctx: DenoiseContext): yield None @contextmanager def patch_unet(self, unet: UNet2DConditionModel, original_weights: Dict[str, torch.Tensor]): """A context manager for applying patches to the UNet model. The context manager's lifetime spans the entire diffusion process. Weight unpatching is handled upstream, and is achieved by adding unsaved weights in `original_weights` dict. Note that this enables some performance optimization by avoiding redundant operations. All other patches (e.g. changes to tensor shapes, function monkey-patches, etc.) should be unpatched by this context manager. Args: unet (UNet2DConditionModel): The UNet model on execution device to patch. original_weights (Dict[str, torch.Tensor]]): A read-only copy of the model's original weights in CPU, for unpatching purposes. Extension can save tensor which being modified, if it is not saved yet, or can access original weight value. """ yield