''' This module handles the generation of the conditioning tensors, including management of weighted subprompts. Useful function exports: get_uc_and_c() get the conditioned and unconditioned latent split_weighted_subpromopts() split subprompts, normalize and weight them log_tokenization() print out colour-coded tokens and warn if truncated ''' import re from difflib import SequenceMatcher import torch def get_uc_and_c_and_ec(prompt, model, log_tokens=False, skip_normalize=False): # Extract Unconditioned Words From Prompt unconditioned_words = '' unconditional_regex = r'\[(.*?)\]' unconditionals = re.findall(unconditional_regex, prompt) if len(unconditionals) > 0: unconditioned_words = ' '.join(unconditionals) # Remove Unconditioned Words From Prompt unconditional_regex_compile = re.compile(unconditional_regex) clean_prompt = unconditional_regex_compile.sub(' ', prompt) prompt = re.sub(' +', ' ', clean_prompt) edited_words = None edited_regex = r'\{(.*?)\}' edited = re.findall(edited_regex, prompt) if len(edited) > 0: edited_words = ' '.join(edited) edited_regex_compile = re.compile(edited_regex) clean_prompt = edited_regex_compile.sub(' ', prompt) prompt = re.sub(' +', ' ', clean_prompt) # get weighted sub-prompts weighted_subprompts = split_weighted_subprompts( prompt, skip_normalize ) ec = None edit_opcodes = None uc, _ = model.get_learned_conditioning([unconditioned_words]) if len(weighted_subprompts) > 1: # i dont know if this is correct.. but it works c = torch.zeros_like(uc) # normalize each "sub prompt" and add it for subprompt, weight in weighted_subprompts: log_tokenization(subprompt, model, log_tokens, weight) subprompt_embeddings, _ = model.get_learned_conditioning([subprompt]) c = torch.add( c, subprompt_embeddings, alpha=weight, ) if edited_words is not None: print("can't do cross-attention control with blends just yet, ignoring edits") else: # just standard 1 prompt log_tokenization(prompt, model, log_tokens, 1) c, c_tokens = model.get_learned_conditioning([prompt]) if edited_words is not None: ec, ec_tokens = model.get_learned_conditioning([edited_words]) edit_opcodes = build_token_edit_opcodes(c_tokens, ec_tokens) return (uc, c, ec, edit_opcodes) def build_token_edit_opcodes(c_tokens, ec_tokens): tokens = c_tokens.cpu().numpy()[0] tokens_edit = ec_tokens.cpu().numpy()[0] opcodes = SequenceMatcher(None, tokens, tokens_edit).get_opcodes() return opcodes def split_weighted_subprompts(text, skip_normalize=False)->list: """ grabs all text up to the first occurrence of ':' uses the grabbed text as a sub-prompt, and takes the value following ':' as weight if ':' has no value defined, defaults to 1.0 repeats until no text remaining """ prompt_parser = re.compile(""" (?P # capture group for 'prompt' (?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:' ) # end 'prompt' (?: # non-capture group :+ # match one or more ':' characters (?P # capture group for 'weight' -?\d+(?:\.\d+)? # match positive or negative integer or decimal number )? # end weight capture group, make optional \s* # strip spaces after weight | # OR $ # else, if no ':' then match end of line ) # end non-capture group """, re.VERBOSE) parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float( match.group("weight") or 1)) for match in re.finditer(prompt_parser, text)] if skip_normalize: return parsed_prompts weight_sum = sum(map(lambda x: x[1], parsed_prompts)) if weight_sum == 0: print( "Warning: Subprompt weights add up to zero. Discarding and using even weights instead.") equal_weight = 1 / max(len(parsed_prompts), 1) return [(x[0], equal_weight) for x in parsed_prompts] return [(x[0], x[1] / weight_sum) for x in parsed_prompts] # shows how the prompt is tokenized # usually tokens have '' to indicate end-of-word, # but for readability it has been replaced with ' ' def log_tokenization(text, model, log=False, weight=1): if not log: return tokens = model.cond_stage_model.tokenizer._tokenize(text) tokenized = "" discarded = "" usedTokens = 0 totalTokens = len(tokens) for i in range(0, totalTokens): token = tokens[i].replace('', ' ') # alternate color s = (usedTokens % 6) + 1 if i < model.cond_stage_model.max_length: tokenized = tokenized + f"\x1b[0;3{s};40m{token}" usedTokens += 1 else: # over max token length discarded = discarded + f"\x1b[0;3{s};40m{token}" print(f"\n>> Tokens ({usedTokens}), Weight ({weight:.2f}):\n{tokenized}\x1b[0m") if discarded != "": print( f">> Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m" )