''' This module handles the generation of the conditioning tensors. Useful function exports: get_uc_and_c_and_ec() get the conditioned and unconditioned latent, and edited conditioning if we're doing cross-attention control ''' import re from difflib import SequenceMatcher from typing import Union import torch from .prompt_parser import PromptParser, Blend, FlattenedPrompt, \ CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment, log_tokenization from ..models.diffusion.cross_attention_control import CrossAttentionControl from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_normalize=False): # Extract Unconditioned Words From Prompt unconditioned_words = '' unconditional_regex = r'\[(.*?)\]' unconditionals = re.findall(unconditional_regex, prompt_string_uncleaned) if len(unconditionals) > 0: unconditioned_words = ' '.join(unconditionals) # Remove Unconditioned Words From Prompt unconditional_regex_compile = re.compile(unconditional_regex) clean_prompt = unconditional_regex_compile.sub(' ', prompt_string_uncleaned) prompt_string_cleaned = re.sub(' +', ' ', clean_prompt) else: prompt_string_cleaned = prompt_string_uncleaned pp = PromptParser() parsed_prompt: Union[FlattenedPrompt, Blend] = None legacy_blend: Blend = pp.parse_legacy_blend(prompt_string_cleaned) if legacy_blend is not None: parsed_prompt = legacy_blend else: # we don't support conjunctions for now parsed_prompt = pp.parse_conjunction(prompt_string_cleaned).prompts[0] parsed_negative_prompt: FlattenedPrompt = pp.parse_conjunction(unconditioned_words).prompts[0] conditioning = None cac_args:CrossAttentionControl.Arguments = None if type(parsed_prompt) is Blend: blend: Blend = parsed_prompt embeddings_to_blend = None for i,flattened_prompt in enumerate(blend.prompts): this_embedding, _ = build_embeddings_and_tokens_for_flattened_prompt(model, flattened_prompt, log_tokens=log_tokens, log_display_label=f"(blend part {i+1}, weight={blend.weights[i]})" ) embeddings_to_blend = this_embedding if embeddings_to_blend is None else torch.cat( (embeddings_to_blend, this_embedding)) conditioning = WeightedFrozenCLIPEmbedder.apply_embedding_weights(embeddings_to_blend.unsqueeze(0), blend.weights, normalize=blend.normalize_weights) else: flattened_prompt: FlattenedPrompt = parsed_prompt wants_cross_attention_control = type(flattened_prompt) is not Blend \ and any([issubclass(type(x), CrossAttentionControlledFragment) for x in flattened_prompt.children]) if wants_cross_attention_control: original_prompt = FlattenedPrompt() edited_prompt = FlattenedPrompt() # for name, a0, a1, b0, b1 in edit_opcodes: only name == 'equal' is currently parsed original_token_count = 0 edited_token_count = 0 edit_opcodes = [] edit_options = [] for fragment in flattened_prompt.children: if type(fragment) is CrossAttentionControlSubstitute: original_prompt.append(fragment.original) edited_prompt.append(fragment.edited) to_replace_token_count = get_tokens_length(model, fragment.original) replacement_token_count = get_tokens_length(model, fragment.edited) edit_opcodes.append(('replace', original_token_count, original_token_count + to_replace_token_count, edited_token_count, edited_token_count + replacement_token_count )) original_token_count += to_replace_token_count edited_token_count += replacement_token_count edit_options.append(fragment.options) #elif type(fragment) is CrossAttentionControlAppend: # edited_prompt.append(fragment.fragment) else: # regular fragment original_prompt.append(fragment) edited_prompt.append(fragment) count = get_tokens_length(model, [fragment]) edit_opcodes.append(('equal', original_token_count, original_token_count+count, edited_token_count, edited_token_count+count)) edit_options.append(None) original_token_count += count edited_token_count += count original_embeddings, original_tokens = build_embeddings_and_tokens_for_flattened_prompt(model, original_prompt, log_tokens=log_tokens, log_display_label="(.swap originals)") # naïvely building a single edited_embeddings like this disregards the effects of changing the absolute location of # subsequent tokens when there is >1 edit and earlier edits change the total token count. # eg "a cat.swap(smiling dog, s_start=0.5) eating a hotdog.swap(pizza)" - when the 'pizza' edit is active but the # 'cat' edit is not, the 'pizza' feature vector will nevertheless be affected by the introduction of the extra # token 'smiling' in the inactive 'cat' edit. # todo: build multiple edited_embeddings, one for each edit, and pass just the edited fragments through to the CrossAttentionControl functions edited_embeddings, edited_tokens = build_embeddings_and_tokens_for_flattened_prompt(model, edited_prompt, log_tokens=log_tokens, log_display_label="(.swap replacements)") conditioning = original_embeddings edited_conditioning = edited_embeddings #print('>> got edit_opcodes', edit_opcodes, 'options', edit_options) cac_args = CrossAttentionControl.Arguments( edited_conditioning = edited_conditioning, edit_opcodes = edit_opcodes, edit_options = edit_options ) else: conditioning, _ = build_embeddings_and_tokens_for_flattened_prompt(model, flattened_prompt, log_tokens=log_tokens, log_display_label="(prompt)") unconditioning, _ = build_embeddings_and_tokens_for_flattened_prompt(model, parsed_negative_prompt, log_tokens=log_tokens, log_display_label="(unconditioning)") if isinstance(conditioning, dict): # hybrid conditioning is in play unconditioning, conditioning = flatten_hybrid_conditioning(unconditioning, conditioning) if cac_args is not None: print(">> Hybrid conditioning cannot currently be combined with cross attention control. Cross attention control will be ignored.") cac_args = None return ( unconditioning, conditioning, InvokeAIDiffuserComponent.ExtraConditioningInfo( cross_attention_control_args=cac_args ) ) def build_token_edit_opcodes(original_tokens, edited_tokens): original_tokens = original_tokens.cpu().numpy()[0] edited_tokens = edited_tokens.cpu().numpy()[0] return SequenceMatcher(None, original_tokens, edited_tokens).get_opcodes() def build_embeddings_and_tokens_for_flattened_prompt(model, flattened_prompt: FlattenedPrompt, log_tokens: bool=False, log_display_label: str=None): if type(flattened_prompt) is not FlattenedPrompt: raise Exception(f"embeddings can only be made from FlattenedPrompts, got {type(flattened_prompt)} instead") fragments = [x.text for x in flattened_prompt.children] weights = [x.weight for x in flattened_prompt.children] embeddings, tokens = model.get_learned_conditioning([fragments], return_tokens=True, fragment_weights=[weights]) if log_tokens: text = " ".join(fragments) log_tokenization(text, model, display_label=log_display_label) return embeddings, tokens def get_tokens_length(model, fragments: list[Fragment]): fragment_texts = [x.text for x in fragments] tokens = model.cond_stage_model.get_tokens(fragment_texts, include_start_and_end_markers=False) return sum([len(x) for x in tokens]) def flatten_hybrid_conditioning(uncond, cond): ''' This handles the choice between a conditional conditioning that is a tensor (used by cross attention) vs one that has additional dimensions as well, as used by 'hybrid' ''' assert isinstance(uncond, dict) assert isinstance(cond, dict) cond_flattened = dict() for k in cond: if isinstance(cond[k], list): cond_flattened[k] = [ torch.cat([uncond[k][i], cond[k][i]]) for i in range(len(cond[k])) ] else: cond_flattened[k] = torch.cat([uncond[k], cond[k]]) return uncond, cond_flattened