import os import torch import numpy as np import warnings import sys pretrained_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' class CodeFormerRestoration(): def __init__(self, codeformer_dir='ldm/invoke/restoration/codeformer', codeformer_model_path='weights/codeformer.pth') -> None: self.model_path = os.path.join(codeformer_dir, codeformer_model_path) self.codeformer_model_exists = os.path.isfile(self.model_path) if not self.codeformer_model_exists: print('## NOT FOUND: CodeFormer model not found at ' + self.model_path) sys.path.append(os.path.abspath(codeformer_dir)) def process(self, image, strength, device, seed=None, fidelity=0.75): if seed is not None: print(f'>> CodeFormer - Restoring Faces for image seed:{seed}') with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=UserWarning) from basicsr.utils.download_util import load_file_from_url from basicsr.utils import img2tensor, tensor2img from facexlib.utils.face_restoration_helper import FaceRestoreHelper from ldm.invoke.restoration.codeformer_arch import CodeFormer from torchvision.transforms.functional import normalize from PIL import Image cf_class = CodeFormer cf = cf_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device) checkpoint_path = load_file_from_url(url=pretrained_model_url, model_dir=os.path.abspath('ldm/invoke/restoration/codeformer/weights'), progress=True) checkpoint = torch.load(checkpoint_path)['params_ema'] cf.load_state_dict(checkpoint) cf.eval() image = image.convert('RGB') # Codeformer expects a BGR np array; make array and flip channels bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1] face_helper = FaceRestoreHelper(upscale_factor=1, use_parse=True, device=device) face_helper.clean_all() face_helper.read_image(bgr_image_array) face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5) face_helper.align_warp_face() for idx, cropped_face in enumerate(face_helper.cropped_faces): cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): output = cf(cropped_face_t, w=fidelity, adain=True)[0] restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() except RuntimeError as error: print(f'\tFailed inference for CodeFormer: {error}.') restored_face = cropped_face restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face) face_helper.get_inverse_affine(None) restored_img = face_helper.paste_faces_to_input_image() # Flip the channels back to RGB res = Image.fromarray(restored_img[...,::-1]) if strength < 1.0: # Resize the image to the new image if the sizes have changed if restored_img.size != image.size: image = image.resize(res.size) res = Image.blend(image, res, strength) cf = None return res