import torch from diffusers.image_processor import VaeImageProcessor from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel from PIL import Image from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation from invokeai.app.invocations.constants import DEFAULT_PRECISION from invokeai.app.invocations.fields import ( FieldDescriptions, Input, InputField, LatentsField, WithBoard, WithMetadata, ) from invokeai.app.invocations.model import VAEField from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.model_manager.load.load_base import LoadedModel from invokeai.backend.stable_diffusion import set_seamless from invokeai.backend.util.devices import TorchDevice @invocation( "l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents", version="1.2.2", ) class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard): """Generates an image from latents.""" latents: LatentsField = InputField( description=FieldDescriptions.latents, input=Input.Connection, ) vae: VAEField = InputField( description=FieldDescriptions.vae, input=Input.Connection, ) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32) @staticmethod def vae_decode( context: InvocationContext, vae_info: LoadedModel, seamless_axes: list[str], latents: torch.Tensor, use_fp32: bool, use_tiling: bool, ) -> Image.Image: assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny)) with set_seamless(vae_info.model, seamless_axes), vae_info as vae: assert isinstance(vae, torch.nn.Module) latents = latents.to(vae.device) if use_fp32: vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance( vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: vae.post_quant_conv.to(latents.dtype) vae.decoder.conv_in.to(latents.dtype) vae.decoder.mid_block.to(latents.dtype) else: latents = latents.float() else: vae.to(dtype=torch.float16) latents = latents.half() if use_tiling or context.config.get().force_tiled_decode: vae.enable_tiling() else: vae.disable_tiling() # clear memory as vae decode can request a lot TorchDevice.empty_cache() with torch.inference_mode(): # copied from diffusers pipeline latents = latents / vae.config.scaling_factor image = vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # denormalize # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 np_image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = VaeImageProcessor.numpy_to_pil(np_image)[0] TorchDevice.empty_cache() return image @torch.no_grad() def invoke(self, context: InvocationContext) -> ImageOutput: latents = context.tensors.load(self.latents.latents_name) vae_info = context.models.load(self.vae.vae) image = self.vae_decode( context=context, vae_info=vae_info, seamless_axes=self.vae.seamless_axes, latents=latents, use_fp32=self.fp32, use_tiling=self.tiled, ) image_dto = context.images.save(image=image) return ImageOutput.build(image_dto)