# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) from typing import Literal, Optional import numpy import cv2 from PIL import Image, ImageFilter, ImageOps, ImageChops from pydantic import Field from pathlib import Path from typing import Union from invokeai.app.invocations.metadata import CoreMetadata from ..models.image import ( ImageCategory, ImageField, ResourceOrigin, PILInvocationConfig, ImageOutput, MaskOutput, ) from .baseinvocation import ( BaseInvocation, InvocationContext, InvocationConfig, ) from invokeai.backend.image_util.safety_checker import SafetyChecker from invokeai.backend.image_util.invisible_watermark import InvisibleWatermark class LoadImageInvocation(BaseInvocation): """Load an image and provide it as output.""" # fmt: off type: Literal["load_image"] = "load_image" # Inputs image: Optional[ImageField] = Field( default=None, description="The image to load" ) # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Load Image", "tags": ["image", "load"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) return ImageOutput( image=ImageField(image_name=self.image.image_name), width=image.width, height=image.height, ) class ShowImageInvocation(BaseInvocation): """Displays a provided image, and passes it forward in the pipeline.""" type: Literal["show_image"] = "show_image" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to show") class Config(InvocationConfig): schema_extra = { "ui": {"title": "Show Image", "tags": ["image", "show"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) if image: image.show() # TODO: how to handle failure? return ImageOutput( image=ImageField(image_name=self.image.image_name), width=image.width, height=image.height, ) class ImageCropInvocation(BaseInvocation, PILInvocationConfig): """Crops an image to a specified box. The box can be outside of the image.""" # fmt: off type: Literal["img_crop"] = "img_crop" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to crop") x: int = Field(default=0, description="The left x coordinate of the crop rectangle") y: int = Field(default=0, description="The top y coordinate of the crop rectangle") width: int = Field(default=512, gt=0, description="The width of the crop rectangle") height: int = Field(default=512, gt=0, description="The height of the crop rectangle") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Crop Image", "tags": ["image", "crop"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) image_crop = Image.new(mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)) image_crop.paste(image, (-self.x, -self.y)) image_dto = context.services.images.create( image=image_crop, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImagePasteInvocation(BaseInvocation, PILInvocationConfig): """Pastes an image into another image.""" # fmt: off type: Literal["img_paste"] = "img_paste" # Inputs base_image: Optional[ImageField] = Field(default=None, description="The base image") image: Optional[ImageField] = Field(default=None, description="The image to paste") mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting") x: int = Field(default=0, description="The left x coordinate at which to paste the image") y: int = Field(default=0, description="The top y coordinate at which to paste the image") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Paste Image", "tags": ["image", "paste"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: base_image = context.services.images.get_pil_image(self.base_image.image_name) image = context.services.images.get_pil_image(self.image.image_name) mask = None if self.mask is not None: mask = context.services.images.get_pil_image(self.mask.image_name) mask = ImageOps.invert(mask.convert("L")) # TODO: probably shouldn't invert mask here... should user be required to do it? min_x = min(0, self.x) min_y = min(0, self.y) max_x = max(base_image.width, image.width + self.x) max_y = max(base_image.height, image.height + self.y) new_image = Image.new(mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)) new_image.paste(base_image, (abs(min_x), abs(min_y))) new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask) image_dto = context.services.images.create( image=new_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig): """Extracts the alpha channel of an image as a mask.""" # fmt: off type: Literal["tomask"] = "tomask" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to create the mask from") invert: bool = Field(default=False, description="Whether or not to invert the mask") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Mask From Alpha", "tags": ["image", "mask", "alpha"]}, } def invoke(self, context: InvocationContext) -> MaskOutput: image = context.services.images.get_pil_image(self.image.image_name) image_mask = image.split()[-1] if self.invert: image_mask = ImageOps.invert(image_mask) image_dto = context.services.images.create( image=image_mask, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.MASK, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return MaskOutput( mask=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig): """Multiplies two images together using `PIL.ImageChops.multiply()`.""" # fmt: off type: Literal["img_mul"] = "img_mul" # Inputs image1: Optional[ImageField] = Field(default=None, description="The first image to multiply") image2: Optional[ImageField] = Field(default=None, description="The second image to multiply") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Multiply Images", "tags": ["image", "multiply"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image1 = context.services.images.get_pil_image(self.image1.image_name) image2 = context.services.images.get_pil_image(self.image2.image_name) multiply_image = ImageChops.multiply(image1, image2) image_dto = context.services.images.create( image=multiply_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) IMAGE_CHANNELS = Literal["A", "R", "G", "B"] class ImageChannelInvocation(BaseInvocation, PILInvocationConfig): """Gets a channel from an image.""" # fmt: off type: Literal["img_chan"] = "img_chan" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to get the channel from") channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Image Channel", "tags": ["image", "channel"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) channel_image = image.getchannel(self.channel) image_dto = context.services.images.create( image=channel_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"] class ImageConvertInvocation(BaseInvocation, PILInvocationConfig): """Converts an image to a different mode.""" # fmt: off type: Literal["img_conv"] = "img_conv" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to convert") mode: IMAGE_MODES = Field(default="L", description="The mode to convert to") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Convert Image", "tags": ["image", "convert"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) converted_image = image.convert(self.mode) image_dto = context.services.images.create( image=converted_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImageBlurInvocation(BaseInvocation, PILInvocationConfig): """Blurs an image""" # fmt: off type: Literal["img_blur"] = "img_blur" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to blur") radius: float = Field(default=8.0, ge=0, description="The blur radius") blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Blur Image", "tags": ["image", "blur"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) blur = ( ImageFilter.GaussianBlur(self.radius) if self.blur_type == "gaussian" else ImageFilter.BoxBlur(self.radius) ) blur_image = image.filter(blur) image_dto = context.services.images.create( image=blur_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) PIL_RESAMPLING_MODES = Literal[ "nearest", "box", "bilinear", "hamming", "bicubic", "lanczos", ] PIL_RESAMPLING_MAP = { "nearest": Image.Resampling.NEAREST, "box": Image.Resampling.BOX, "bilinear": Image.Resampling.BILINEAR, "hamming": Image.Resampling.HAMMING, "bicubic": Image.Resampling.BICUBIC, "lanczos": Image.Resampling.LANCZOS, } class ImageResizeInvocation(BaseInvocation, PILInvocationConfig): """Resizes an image to specific dimensions""" # fmt: off type: Literal["img_resize"] = "img_resize" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to resize") width: Union[int, None] = Field(ge=64, multiple_of=8, description="The width to resize to (px)") height: Union[int, None] = Field(ge=64, multiple_of=8, description="The height to resize to (px)") resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Resize Image", "tags": ["image", "resize"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) resample_mode = PIL_RESAMPLING_MAP[self.resample_mode] resize_image = image.resize( (self.width, self.height), resample=resample_mode, ) image_dto = context.services.images.create( image=resize_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImageScaleInvocation(BaseInvocation, PILInvocationConfig): """Scales an image by a factor""" # fmt: off type: Literal["img_scale"] = "img_scale" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to scale") scale_factor: Optional[float] = Field(default=2.0, gt=0, description="The factor by which to scale the image") resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Scale Image", "tags": ["image", "scale"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) resample_mode = PIL_RESAMPLING_MAP[self.resample_mode] width = int(image.width * self.scale_factor) height = int(image.height * self.scale_factor) resize_image = image.resize( (width, height), resample=resample_mode, ) image_dto = context.services.images.create( image=resize_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImageLerpInvocation(BaseInvocation, PILInvocationConfig): """Linear interpolation of all pixels of an image""" # fmt: off type: Literal["img_lerp"] = "img_lerp" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to lerp") min: int = Field(default=0, ge=0, le=255, description="The minimum output value") max: int = Field(default=255, ge=0, le=255, description="The maximum output value") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Image Linear Interpolation", "tags": ["image", "linear", "interpolation", "lerp"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) image_arr = numpy.asarray(image, dtype=numpy.float32) / 255 image_arr = image_arr * (self.max - self.min) + self.min lerp_image = Image.fromarray(numpy.uint8(image_arr)) image_dto = context.services.images.create( image=lerp_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig): """Inverse linear interpolation of all pixels of an image""" # fmt: off type: Literal["img_ilerp"] = "img_ilerp" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to lerp") min: int = Field(default=0, ge=0, le=255, description="The minimum input value") max: int = Field(default=255, ge=0, le=255, description="The maximum input value") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": { "title": "Image Inverse Linear Interpolation", "tags": ["image", "linear", "interpolation", "inverse"], }, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) image_arr = numpy.asarray(image, dtype=numpy.float32) image_arr = numpy.minimum(numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1) * 255 ilerp_image = Image.fromarray(numpy.uint8(image_arr)) image_dto = context.services.images.create( image=ilerp_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig): """Add blur to NSFW-flagged images""" # fmt: off type: Literal["img_nsfw"] = "img_nsfw" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to check") metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Blur NSFW Images", "tags": ["image", "nsfw", "checker"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) logger = context.services.logger logger.debug("Running NSFW checker") if SafetyChecker.has_nsfw_concept(image): logger.info("A potentially NSFW image has been detected. Image will be blurred.") blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32)) caution = self._get_caution_img() blurry_image.paste(caution, (0, 0), caution) image = blurry_image image_dto = context.services.images.create( image=image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, metadata=self.metadata.dict() if self.metadata else None, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) def _get_caution_img(self) -> Image: import invokeai.app.assets.images as image_assets caution = Image.open(Path(image_assets.__path__[0]) / "caution.png") return caution.resize((caution.width // 2, caution.height // 2)) class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig): """Add an invisible watermark to an image""" # fmt: off type: Literal["img_watermark"] = "img_watermark" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to check") text: str = Field(default='InvokeAI', description="Watermark text") metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image") # fmt: on class Config(InvocationConfig): schema_extra = { "ui": {"title": "Add Invisible Watermark", "tags": ["image", "watermark", "invisible"]}, } def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) new_image = InvisibleWatermark.add_watermark(image, self.text) image_dto = context.services.images.create( image=new_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, metadata=self.metadata.dict() if self.metadata else None, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class MaskEdgeInvocation(BaseInvocation, PILInvocationConfig): """Applies an edge mask to an image""" # fmt: off type: Literal["mask_edge"] = "mask_edge" # Inputs image: Optional[ImageField] = Field(default=None, description="The image to apply the mask to") edge_size: int = Field(description="The size of the edge") edge_blur: int = Field(description="The amount of blur on the edge") low_threshold: int = Field(description="First threshold for the hysteresis procedure in Canny edge detection") high_threshold: int = Field(description="Second threshold for the hysteresis procedure in Canny edge detection") # fmt: on def invoke(self, context: InvocationContext) -> MaskOutput: mask = context.services.images.get_pil_image(self.image.image_name) npimg = numpy.asarray(mask, dtype=numpy.uint8) npgradient = numpy.uint8( 255 * (1.0 - numpy.floor(numpy.abs(0.5 - numpy.float32(npimg) / 255.0) * 2.0)) ) npedge = cv2.Canny(npimg, threshold1=self.low_threshold, threshold2=self.high_threshold) npmask = npgradient + npedge npmask = cv2.dilate( npmask, numpy.ones((3, 3), numpy.uint8), iterations=int(self.edge_size / 2) ) new_mask = Image.fromarray(npmask) if self.edge_blur > 0: new_mask = new_mask.filter(ImageFilter.BoxBlur(self.edge_blur)) new_mask = ImageOps.invert(new_mask) image_dto = context.services.images.create( image=new_mask, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.MASK, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return MaskOutput( mask=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ColorCorrectInvocation(BaseInvocation, PILInvocationConfig): """ Shifts the colors of a target image to match the reference image, optionally using a mask to only color-correct certain regions of the target image. """ type: Literal["color_correct"] = "color_correct" image: Optional[ImageField] = Field(default=None, description="The image to color-correct") reference: Optional[ImageField] = Field(default=None, description="Reference image for color-correction") mask: Optional[ImageField] = Field(default=None, description="Mask to use when applying color-correction") mask_blur_radius: float = Field(default=8, description="Mask blur radius") def invoke(self, context: InvocationContext) -> ImageOutput: pil_init_mask = None if self.mask is not None: pil_init_mask = context.services.images.get_pil_image( self.mask.image_name ).convert("L") init_image = context.services.images.get_pil_image( self.reference.image_name ) result = context.services.images.get_pil_image( self.image.image_name ).convert("RGBA") #if init_image is None or init_mask is None: # return result # Get the original alpha channel of the mask if there is one. # Otherwise it is some other black/white image format ('1', 'L' or 'RGB') #pil_init_mask = ( # init_mask.getchannel("A") # if init_mask.mode == "RGBA" # else init_mask.convert("L") #) pil_init_image = init_image.convert( "RGBA" ) # Add an alpha channel if one doesn't exist # Build an image with only visible pixels from source to use as reference for color-matching. init_rgb_pixels = numpy.asarray(init_image.convert("RGB"), dtype=numpy.uint8) init_a_pixels = numpy.asarray(pil_init_image.getchannel("A"), dtype=numpy.uint8) init_mask_pixels = numpy.asarray(pil_init_mask, dtype=numpy.uint8) # Get numpy version of result np_image = numpy.asarray(result.convert("RGB"), dtype=numpy.uint8) # Mask and calculate mean and standard deviation mask_pixels = init_a_pixels * init_mask_pixels > 0 np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :] np_image_masked = np_image[mask_pixels, :] if np_init_rgb_pixels_masked.size > 0: init_means = np_init_rgb_pixels_masked.mean(axis=0) init_std = np_init_rgb_pixels_masked.std(axis=0) gen_means = np_image_masked.mean(axis=0) gen_std = np_image_masked.std(axis=0) # Color correct np_matched_result = np_image.copy() np_matched_result[:, :, :] = ( ( ( ( np_matched_result[:, :, :].astype(numpy.float32) - gen_means[None, None, :] ) / gen_std[None, None, :] ) * init_std[None, None, :] + init_means[None, None, :] ) .clip(0, 255) .astype(numpy.uint8) ) matched_result = Image.fromarray(np_matched_result, mode="RGB") else: matched_result = Image.fromarray(np_image, mode="RGB") # Blur the mask out (into init image) by specified amount if self.mask_blur_radius > 0: nm = numpy.asarray(pil_init_mask, dtype=numpy.uint8) nmd = cv2.erode( nm, kernel=numpy.ones((3, 3), dtype=numpy.uint8), iterations=int(self.mask_blur_radius / 2), ) pmd = Image.fromarray(nmd, mode="L") blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(self.mask_blur_radius)) else: blurred_init_mask = pil_init_mask multiplied_blurred_init_mask = ImageChops.multiply( blurred_init_mask, result.split()[-1] ) # Paste original on color-corrected generation (using blurred mask) matched_result.paste(init_image, (0, 0), mask=multiplied_blurred_init_mask) image_dto = context.services.images.create( image=matched_result, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) class ImageHueAdjustmentInvocation(BaseInvocation): """Adjusts the Hue of an image.""" # fmt: off type: Literal["img_hue_adjust"] = "img_hue_adjust" # Inputs image: ImageField = Field(default=None, description="The image to adjust") hue: int = Field(default=0, description="The degrees by which to rotate the hue, 0-360") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: pil_image = context.services.images.get_pil_image(self.image.image_name) # Convert image to HSV color space hsv_image = numpy.array(pil_image.convert("HSV")) # Convert hue from 0..360 to 0..256 hue = int(256 * ((self.hue % 360) / 360)) # Increment each hue and wrap around at 255 hsv_image[:, :, 0] = (hsv_image[:, :, 0] + hue) % 256 # Convert back to PIL format and to original color mode pil_image = Image.fromarray(hsv_image, mode="HSV").convert("RGBA") image_dto = context.services.images.create( image=pil_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, is_intermediate=self.is_intermediate, session_id=context.graph_execution_state_id, ) return ImageOutput( image=ImageField( image_name=image_dto.image_name, ), width=image_dto.width, height=image_dto.height, ) class ImageLuminosityAdjustmentInvocation(BaseInvocation): """Adjusts the Luminosity (Value) of an image.""" # fmt: off type: Literal["img_luminosity_adjust"] = "img_luminosity_adjust" # Inputs image: ImageField = Field(default=None, description="The image to adjust") luminosity: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the luminosity (value)") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: pil_image = context.services.images.get_pil_image(self.image.image_name) # Convert PIL image to OpenCV format (numpy array), note color channel # ordering is changed from RGB to BGR image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1] # Convert image to HSV color space hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Adjust the luminosity (value) hsv_image[:, :, 2] = numpy.clip(hsv_image[:, :, 2] * self.luminosity, 0, 255) # Convert image back to BGR color space image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR) # Convert back to PIL format and to original color mode pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA") image_dto = context.services.images.create( image=pil_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, is_intermediate=self.is_intermediate, session_id=context.graph_execution_state_id, ) return ImageOutput( image=ImageField( image_name=image_dto.image_name, ), width=image_dto.width, height=image_dto.height, ) class ImageSaturationAdjustmentInvocation(BaseInvocation): """Adjusts the Saturation of an image.""" # fmt: off type: Literal["img_saturation_adjust"] = "img_saturation_adjust" # Inputs image: ImageField = Field(default=None, description="The image to adjust") saturation: float = Field(default=1.0, ge=0, le=1, description="The factor by which to adjust the saturation") # fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: pil_image = context.services.images.get_pil_image(self.image.image_name) # Convert PIL image to OpenCV format (numpy array), note color channel # ordering is changed from RGB to BGR image = numpy.array(pil_image.convert("RGB"))[:, :, ::-1] # Convert image to HSV color space hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # Adjust the saturation hsv_image[:, :, 1] = numpy.clip(hsv_image[:, :, 1] * self.saturation, 0, 255) # Convert image back to BGR color space image = cv2.cvtColor(hsv_image, cv2.COLOR_HSV2BGR) # Convert back to PIL format and to original color mode pil_image = Image.fromarray(image[:, :, ::-1], "RGB").convert("RGBA") image_dto = context.services.images.create( image=pil_image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, is_intermediate=self.is_intermediate, session_id=context.graph_execution_state_id, ) return ImageOutput( image=ImageField( image_name=image_dto.image_name, ), width=image_dto.width, height=image_dto.height, )