from builtins import float from typing import List, Union from pydantic import BaseModel, Field, field_validator, model_validator from typing_extensions import Self from invokeai.app.invocations.baseinvocation import ( BaseInvocation, BaseInvocationOutput, invocation, invocation_output, ) from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType from invokeai.app.invocations.model import ModelIdentifierField from invokeai.app.invocations.primitives import ImageField from invokeai.app.invocations.util import validate_begin_end_step, validate_weights from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, IPAdapterConfig, ModelType class IPAdapterField(BaseModel): image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).") ip_adapter_model: ModelIdentifierField = Field(description="The IP-Adapter model to use.") image_encoder_model: ModelIdentifierField = Field(description="The name of the CLIP image encoder model.") weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet") begin_step_percent: float = Field( default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" ) end_step_percent: float = Field( default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" ) @field_validator("weight") @classmethod def validate_ip_adapter_weight(cls, v: float) -> float: validate_weights(v) return v @model_validator(mode="after") def validate_begin_end_step_percent(self) -> Self: validate_begin_end_step(self.begin_step_percent, self.end_step_percent) return self @invocation_output("ip_adapter_output") class IPAdapterOutput(BaseInvocationOutput): # Outputs ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter") @invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.2.2") class IPAdapterInvocation(BaseInvocation): """Collects IP-Adapter info to pass to other nodes.""" # Inputs image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).") ip_adapter_model: ModelIdentifierField = InputField( description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1, ui_type=UIType.IPAdapterModel, ) weight: Union[float, List[float]] = InputField( default=1, description="The weight given to the IP-Adapter", title="Weight" ) begin_step_percent: float = InputField( default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)" ) end_step_percent: float = InputField( default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)" ) @field_validator("weight") @classmethod def validate_ip_adapter_weight(cls, v: float) -> float: validate_weights(v) return v @model_validator(mode="after") def validate_begin_end_step_percent(self) -> Self: validate_begin_end_step(self.begin_step_percent, self.end_step_percent) return self def invoke(self, context: InvocationContext) -> IPAdapterOutput: # Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model. ip_adapter_info = context.models.get_config(self.ip_adapter_model.key) assert isinstance(ip_adapter_info, IPAdapterConfig) image_encoder_model_id = ip_adapter_info.image_encoder_model_id image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip() image_encoder_model = self._get_image_encoder(context, image_encoder_model_name) return IPAdapterOutput( ip_adapter=IPAdapterField( image=self.image, ip_adapter_model=self.ip_adapter_model, image_encoder_model=ModelIdentifierField.from_config(image_encoder_model), weight=self.weight, begin_step_percent=self.begin_step_percent, end_step_percent=self.end_step_percent, ), ) def _get_image_encoder(self, context: InvocationContext, image_encoder_model_name: str) -> AnyModelConfig: found = False while not found: image_encoder_models = context.models.search_by_attrs( name=image_encoder_model_name, base=BaseModelType.Any, type=ModelType.CLIPVision ) found = len(image_encoder_models) > 0 if not found: context.logger.warning( f"The image encoder required by this IP Adapter ({image_encoder_model_name}) is not installed." ) context.logger.warning("Downloading and installing now. This may take a while.") installer = context._services.model_manager.install job = installer.heuristic_import(f"InvokeAI/{image_encoder_model_name}") installer.wait_for_job(job, timeout=600) # wait up to 10 minutes - then raise a TimeoutException assert len(image_encoder_models) == 1 return image_encoder_models[0]