"""This module manages the InvokeAI `models.yaml` file, mapping symbolic diffusers model names to the paths and repo_ids used by the underlying `from_pretrained()` call. For fetching models, use manager.get_model('symbolic name'). This will return a SDModelInfo object that contains the following attributes: * context -- a context manager Generator that loads and locks the model into GPU VRAM and returns the model for use. See below for usage. * name -- symbolic name of the model * type -- SDModelType of the model * hash -- unique hash for the model * location -- path or repo_id of the model * revision -- revision of the model if coming from a repo id, e.g. 'fp16' * precision -- torch precision of the model Typical usage: from invokeai.backend import ModelManager manager = ModelManager( config='./configs/models.yaml', max_cache_size=8 ) # gigabytes model_info = manager.get_model('stable-diffusion-1.5', SDModelType.Diffusers) with model_info.context as my_model: my_model.latents_from_embeddings(...) The manager uses the underlying ModelCache class to keep frequently-used models in RAM and move them into GPU as needed for generation operations. The optional `max_cache_size` argument indicates the maximum size the cache can grow to, in gigabytes. The underlying ModelCache object can be accessed using the manager's "cache" attribute. Because the model manager can return multiple different types of models, you may wish to add additional type checking on the class of model returned. To do this, provide the option `model_type` parameter: model_info = manager.get_model( 'clip-tokenizer', model_type=SDModelType.Tokenizer ) This will raise an InvalidModelError if the format defined in the config file doesn't match the requested model type. MODELS.YAML The general format of a models.yaml section is: type-of-model/name-of-model: format: folder|ckpt|safetensors repo_id: owner/repo path: /path/to/local/file/or/directory subfolder: subfolder-name The type of model is given in the stanza key, and is one of {diffusers, ckpt, vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, lora, textual_inversion}, and correspond to items in the SDModelType enum defined in model_cache.py The format indicates whether the model is organized as a folder with model subdirectories, or is contained in a single checkpoint or safetensors file. One, but not both, of repo_id and path are provided. repo_id is the HuggingFace repository ID of the model, and path points to the file or directory on disk. If subfolder is provided, then the model exists in a subdirectory of the main model. These are usually named after the model type, such as "unet". This example summarizes the two ways of getting a non-diffuser model: text_encoder/clip-test-1: format: folder repo_id: openai/clip-vit-large-patch14 description: Returns standalone CLIPTextModel text_encoder/clip-test-2: format: folder repo_id: stabilityai/stable-diffusion-2 subfolder: text_encoder description: Returns the text_encoder in the subfolder of the diffusers model (just the encoder in RAM) SUBMODELS: It is also possible to fetch an isolated submodel from a diffusers model. Use the `submodel` parameter to select which part: vae = manager.get_model('stable-diffusion-1.5',submodel=SDModelType.Vae) with vae.context as my_vae: print(type(my_vae)) # "AutoencoderKL" DISAMBIGUATION: You may wish to use the same name for a related family of models. To do this, disambiguate the stanza key with the model and and format separated by "/". Example: tokenizer/clip-large: format: tokenizer repo_id: openai/clip-vit-large-patch14 description: Returns standalone tokenizer text_encoder/clip-large: format: text_encoder repo_id: openai/clip-vit-large-patch14 description: Returns standalone text encoder You can now use the `model_type` argument to indicate which model you want: tokenizer = mgr.get('clip-large',model_type=SDModelType.Tokenizer) encoder = mgr.get('clip-large',model_type=SDModelType.TextEncoder) OTHER FUNCTIONS: Other methods provided by ModelManager support importing, editing, converting and deleting models. """ from __future__ import annotations import os import re import textwrap from dataclasses import dataclass from enum import Enum, auto from packaging import version from pathlib import Path from shutil import rmtree from typing import Callable, Optional, List, Tuple, Union, types import safetensors import safetensors.torch import torch from diffusers import AutoencoderKL from diffusers.utils import is_safetensors_available from huggingface_hub import scan_cache_dir from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig import invokeai.backend.util.logging as logger from invokeai.app.services.config import get_invokeai_config from invokeai.backend.util import download_with_resume from ..util import CUDA_DEVICE from .model_cache import (ModelCache, ModelLocker, SDModelType, SilenceWarnings) # We are only starting to number the config file with release 3. # The config file version doesn't have to start at release version, but it will help # reduce confusion. CONFIG_FILE_VERSION='3.0.0' # wanted to use pydantic here, but Generator objects not supported @dataclass class SDModelInfo(): context: ModelLocker name: str type: SDModelType hash: str location: Union[Path,str] precision: torch.dtype revision: str = None _cache: ModelCache = None def __enter__(self): return self.context.__enter__() def __exit__(self,*args, **kwargs): self.context.__exit__(*args, **kwargs) class InvalidModelError(Exception): "Raised when an invalid model is requested" pass class SDLegacyType(Enum): V1 = auto() V1_INPAINT = auto() V2 = auto() V2_e = auto() V2_v = auto() UNKNOWN = auto() MAX_CACHE_SIZE = 6.0 # GB class ModelManager(object): """ High-level interface to model management. """ logger: types.ModuleType = logger def __init__( self, config: Union[Path, DictConfig, str], device_type: torch.device = CUDA_DEVICE, precision: torch.dtype = torch.float16, max_cache_size=MAX_CACHE_SIZE, sequential_offload=False, logger: types.ModuleType = logger, ): """ Initialize with the path to the models.yaml config file. Optional parameters are the torch device type, precision, max_models, and sequential_offload boolean. Note that the default device type and precision are set up for a CUDA system running at half precision. """ if isinstance(config, DictConfig): self.config_path = None self.config = config elif isinstance(config,(str,Path)): self.config_path = config self.config = OmegaConf.load(self.config_path) else: raise ValueError('config argument must be an OmegaConf object, a Path or a string') # check config version number and update on disk/RAM if necessary self._update_config_file_version() self.globals = get_invokeai_config() self.logger = logger self.cache = ModelCache( max_cache_size=max_cache_size, execution_device = device_type, precision = precision, sequential_offload = sequential_offload, logger = logger, ) self.cache_keys = dict() def model_exists( self, model_name: str, model_type: SDModelType = SDModelType.Diffusers, ) -> bool: """ Given a model name, returns True if it is a valid identifier. """ model_key = self.create_key(model_name, model_type) return model_key in self.config def create_key(self, model_name: str, model_type: SDModelType) -> str: return f"{model_type}/{model_name}" def parse_key(self, model_key: str) -> Tuple[str, SDModelType]: model_type_str, model_name = model_key.split('/', 1) try: model_type = SDModelType(model_type_str) return (model_name, model_type) except: raise Exception(f"Unknown model type: {model_type_str}") def get_model( self, model_name: str, model_type: SDModelType = SDModelType.Diffusers, submodel: Optional[SDModelType] = None, ) -> SDModelInfo: """Given a model named identified in models.yaml, return an SDModelInfo object describing it. :param model_name: symbolic name of the model in models.yaml :param model_type: SDModelType enum indicating the type of model to return :param submodel: an SDModelType enum indicating the portion of the model to retrieve (e.g. SDModelType.Vae) If not provided, the model_type will be read from the `format` field of the corresponding stanza. If provided, the model_type will be used to disambiguate stanzas in the configuration file. The default is to assume a diffusers pipeline. The behavior is illustrated here: [models.yaml] diffusers/test1: repo_id: foo/bar description: Typical diffusers pipeline lora/test1: repo_id: /tmp/loras/test1.safetensors description: Typical lora file test1_pipeline = mgr.get_model('test1') # returns a StableDiffusionGeneratorPipeline test1_vae1 = mgr.get_model('test1', submodel=SDModelType.Vae) # returns the VAE part of a diffusers model as an AutoencoderKL test1_vae2 = mgr.get_model('test1', model_type=SDModelType.Diffusers, submodel=SDModelType.Vae) # does the same thing as the previous statement. Note that model_type # is for the parent model, and submodel is for the part test1_lora = mgr.get_model('test1', model_type=SDModelType.Lora) # returns a LoRA embed (as a 'dict' of tensors) test1_encoder = mgr.get_modelI('test1', model_type=SDModelType.TextEncoder) # raises an InvalidModelError """ model_key = self.create_key(model_name, model_type) if model_key not in self.config: raise InvalidModelError( f'"{model_key}" is not a known model name. Please check your models.yaml file' ) # get the required loading info out of the config file mconfig = self.config[model_key] # type already checked as it's part of key if model_type == SDModelType.Diffusers: # intercept stanzas that point to checkpoint weights and replace them # with the equivalent diffusers model if mconfig.format in ["ckpt", "safetensors"]: location = self.convert_ckpt_and_cache(mconfig) elif mconfig.get('path'): location = self.globals.root_dir / mconfig.get('path') else: location = mconfig.get('repo_id') elif p := mconfig.get('path'): location = self.globals.root_dir / p elif r := mconfig.get('repo_id'): location = r elif w := mconfig.get('weights'): location = self.globals.root_dir / w else: location = None revision = mconfig.get('revision') hash = self.cache.model_hash(location, revision) # If the caller is asking for part of the model and the config indicates # an external replacement for that field, then we fetch the replacement if submodel and mconfig.get(submodel): location = mconfig.get(submodel).get('path') \ or mconfig.get(submodel).get('repo_id') model_type = submodel submodel = None # to support the traditional way of attaching a VAE # to a model, we hacked in `attach_model_part` # TODO: if model_type == SDModelType.Vae and "vae" in mconfig: print("NOT_IMPLEMENTED - RETURN CUSTOM VAE") model_context = self.cache.get_model( location, model_type = model_type, revision = revision, submodel = submodel, ) # in case we need to communicate information about this # model to the cache manager, then we need to remember # the cache key self.cache_keys[model_key] = model_context.key return SDModelInfo( context = model_context, name = model_name, type = submodel or model_type, hash = hash, location = location, revision = revision, precision = self.cache.precision, _cache = self.cache ) def default_model(self) -> Optional[Tuple[str, SDModelType]]: """ Returns the name of the default model, or None if none is defined. """ for model_name, model_type in self.model_names(): model_key = self.create_key(model_name, model_type) if self.config[model_key].get("default"): return (model_name, model_type) return self.model_names()[0][0] def set_default_model(self, model_name: str, model_type: SDModelType=SDModelType.Diffusers) -> None: """ Set the default model. The change will not take effect until you call model_manager.commit() """ assert self.model_exists(model_name, model_type), f"unknown model '{model_name}'" config = self.config for model_name, model_type in self.model_names(): key = self.create_key(model_name, model_type) config[key].pop("default", None) config[self.create_key(model_name, model_type)]["default"] = True def model_info( self, model_name: str, model_type: SDModelType=SDModelType.Diffusers, ) -> dict: """ Given a model name returns the OmegaConf (dict-like) object describing it. """ if not self.model_exists(model_name, model_type): return None return self.config[self.create_key(model_name, model_type)] def model_names(self) -> List[Tuple[str, SDModelType]]: """ Return a list of (str, SDModelType) corresponding to all models known to the configuration. """ return [(self.parse_key(x)) for x in self.config.keys() if isinstance(self.config[x], DictConfig)] def is_legacy(self, model_name: str, model_type: SDModelType.Diffusers) -> bool: """ Return true if this is a legacy (.ckpt) model """ # if we are converting legacy files automatically, then # there are no legacy ckpts! if self.globals.ckpt_convert: return False info = self.model_info(model_name, model_type) if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")): return True return False def list_models(self, model_type: SDModelType=None) -> dict[str,dict[str,str]]: """ Return a dict of models, in format [model_type][model_name], with following fields: model_name model_type format description status # for folders only repo_id path subfolder vae # for ckpts only config weights vae Please use model_manager.models() to get all the model names, model_manager.model_info('model-name') to get the stanza for the model named 'model-name', and model_manager.config to get the full OmegaConf object derived from models.yaml """ models = {} for model_key in sorted(self.config, key=str.casefold): stanza = self.config[model_key] # don't include VAEs in listing (legacy style) if "config" in stanza and "/VAE/" in stanza["config"]: continue if model_key.startswith('_'): continue model_name, stanza_type = self.parse_key(model_key) if model_type is not None and model_type != stanza_type: continue if stanza_type not in models: models[stanza_type] = dict() models[stanza_type][model_name] = dict() model_format = stanza.get('format') # Common Attribs description = stanza.get("description", None) models[stanza_type][model_name].update( model_name=model_name, model_type=stanza_type, format=model_format, description=description, status="unknown", # TODO: no more status as model loaded separately ) # Checkpoint Config Parse if model_format in ["ckpt","safetensors"]: models[stanza_type][model_name].update( config = str(stanza.get("config", None)), weights = str(stanza.get("weights", None)), vae = str(stanza.get("vae", None)), ) # Diffusers Config Parse elif model_format == "folder": if vae := stanza.get("vae", None): if isinstance(vae, DictConfig): vae = dict( repo_id = str(vae.get("repo_id", None)), path = str(vae.get("path", None)), subfolder = str(vae.get("subfolder", None)), ) models[stanza_type][model_name].update( vae = vae, repo_id = str(stanza.get("repo_id", None)), path = str(stanza.get("path", None)), ) return models def print_models(self) -> None: """ Print a table of models, their descriptions, and load status """ for model_type, model_dict in self.list_models().items(): for model_name, model_info in model_dict.items(): line = f'{model_info["model_name"]:25s} {model_info["status"]:>15s} {model_info["model_type"]:10s} {model_info["description"]}' if model_info["status"] in ["in gpu","locked in gpu"]: line = f"\033[1m{line}\033[0m" print(line) def del_model( self, model_name: str, model_type: SDModelType.Diffusers, delete_files: bool = False, ): """ Delete the named model. """ model_key = self.create_key(model_name, model_type) model_cfg = self.pop(model_key, None) if model_cfg is None: self.logger.error( f"Unknown model {model_key}" ) return # TODO: some legacy? #if model_name in self.stack: # self.stack.remove(model_name) if delete_files: repo_id = model_cfg.get("repo_id", None) path = self._abs_path(model_cfg.get("path", None)) weights = self._abs_path(model_cfg.get("weights", None)) if "weights" in model_cfg: weights = self._abs_path(model_cfg["weights"]) self.logger.info(f"Deleting file {weights}") Path(weights).unlink(missing_ok=True) elif "path" in model_cfg: path = self._abs_path(model_cfg["path"]) self.logger.info(f"Deleting directory {path}") rmtree(path, ignore_errors=True) elif "repo_id" in model_cfg: repo_id = model_cfg["repo_id"] self.logger.info(f"Deleting the cached model directory for {repo_id}") self._delete_model_from_cache(repo_id) def add_model( self, model_name: str, model_type: SDModelType, model_attributes: dict, clobber: bool = False, ) -> None: """ Update the named model with a dictionary of attributes. Will fail with an assertion error if the name already exists. Pass clobber=True to overwrite. On a successful update, the config will be changed in memory and the method will return True. Will fail with an assertion error if provided attributes are incorrect or the model name is missing. """ if model_type == SDModelType.Fiffusers: # TODO: automaticaly or manualy? #assert "format" in model_attributes, 'missing required field "format"' model_format = "ckpt" if "weights" in model_attributes else "diffusers" if model_format == "diffusers": assert ( "description" in model_attributes ), 'required field "description" is missing' assert ( "path" in model_attributes or "repo_id" in model_attributes ), 'model must have either the "path" or "repo_id" fields defined' elif model_format == "ckpt": for field in ("description", "weights", "config"): assert field in model_attributes, f"required field {field} is missing" else: assert "weights" in model_attributes and "description" in model_attributes model_key = self.create_key(model_name, model_type) assert ( clobber or model_key not in self.config ), f'attempt to overwrite existing model definition "{model_key}"' self.config[model_key] = model_attributes if "weights" in self.config[model_key]: self.config[model_key]["weights"].replace("\\", "/") if clobber and model_key in self.cache_keys: self.cache.uncache_model(self.cache_keys[model_key]) del self.cache_keys[model_key] def import_diffuser_model( self, repo_or_path: Union[str, Path], model_name: str = None, description: str = None, vae: dict = None, commit_to_conf: Path = None, ) -> bool: """ Attempts to install the indicated diffuser model and returns True if successful. "repo_or_path" can be either a repo-id or a path-like object corresponding to the top of a downloaded diffusers directory. You can optionally provide a model name and/or description. If not provided, then these will be derived from the repo name. If you provide a commit_to_conf path to the configuration file, then the new entry will be committed to the models.yaml file. """ model_name = model_name or Path(repo_or_path).stem model_description = description or f"Imported diffusers model {model_name}" new_config = dict( description=model_description, vae=vae, format="diffusers", ) if isinstance(repo_or_path, Path) and repo_or_path.exists(): new_config.update(path=str(repo_or_path)) else: new_config.update(repo_id=repo_or_path) self.add_model(model_name, SDModelType.Diffusers, new_config, True) if commit_to_conf: self.commit(commit_to_conf) return self.create_key(model_name, SDModelType.Diffusers) def import_lora( self, path: Path, model_name: Optional[str] = None, description: Optional[str] = None, ): """ Creates an entry for the indicated lora file. Call mgr.commit() to write out the configuration to models.yaml """ path = Path(path) model_name = model_name or path.stem model_description = description or f"LoRA model {model_name}" self.add_model( model_name, SDModelType.Lora, dict( format="lora", weights=str(path), description=model_description, ), True ) def import_embedding( self, path: Path, model_name: Optional[str] = None, description: Optional[str] = None, ): """ Creates an entry for the indicated lora file. Call mgr.commit() to write out the configuration to models.yaml """ path = Path(path) if path.is_directory() and (path / "learned_embeds.bin").exists(): weights = path / "learned_embeds.bin" else: weights = path model_name = model_name or path.stem model_description = description or f"Textual embedding model {model_name}" self.add_model( model_name, SDModelType.TextualInversion, dict( format="textual_inversion", weights=str(weights), description=model_description, ), True ) @classmethod def probe_model_type(self, checkpoint: dict) -> SDLegacyType: """ Given a pickle or safetensors model object, probes contents of the object and returns an SDLegacyType indicating its format. Valid return values include: SDLegacyType.V1 SDLegacyType.V1_INPAINT SDLegacyType.V2 (V2 prediction type unknown) SDLegacyType.V2_e (V2 using 'epsilon' prediction type) SDLegacyType.V2_v (V2 using 'v_prediction' prediction type) SDLegacyType.UNKNOWN """ global_step = checkpoint.get("global_step") state_dict = checkpoint.get("state_dict") or checkpoint try: key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if global_step == 220000: return SDLegacyType.V2_e elif global_step == 110000: return SDLegacyType.V2_v else: return SDLegacyType.V2 # otherwise we assume a V1 file in_channels = state_dict[ "model.diffusion_model.input_blocks.0.0.weight" ].shape[1] if in_channels == 9: return SDLegacyType.V1_INPAINT elif in_channels == 4: return SDLegacyType.V1 else: return SDLegacyType.UNKNOWN except KeyError: return SDLegacyType.UNKNOWN def heuristic_import( self, path_url_or_repo: str, model_name: Optional[str] = None, description: Optional[str] = None, model_config_file: Optional[Path] = None, commit_to_conf: Optional[Path] = None, config_file_callback: Optional[Callable[[Path], Path]] = None, ) -> str: """Accept a string which could be: - a HF diffusers repo_id - a URL pointing to a legacy .ckpt or .safetensors file - a local path pointing to a legacy .ckpt or .safetensors file - a local directory containing .ckpt and .safetensors files - a local directory containing a diffusers model After determining the nature of the model and downloading it (if necessary), the file is probed to determine the correct configuration file (if needed) and it is imported. The model_name and/or description can be provided. If not, they will be generated automatically. If commit_to_conf is provided, the newly loaded model will be written to the `models.yaml` file at the indicated path. Otherwise, the changes will only remain in memory. The routine will do its best to figure out the config file needed to convert legacy checkpoint file, but if it can't it will call the config_file_callback routine, if provided. The callback accepts a single argument, the Path to the checkpoint file, and returns a Path to the config file to use. The (potentially derived) name of the model is returned on success, or None on failure. When multiple models are added from a directory, only the last imported one is returned. """ model_path: Path = None thing = path_url_or_repo # to save typing self.logger.info(f"Probing {thing} for import") if thing.startswith(("http:", "https:", "ftp:")): self.logger.info(f"{thing} appears to be a URL") model_path = self._resolve_path( thing, "models/ldm/stable-diffusion-v1" ) # _resolve_path does a download if needed elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")): if Path(thing).stem in ["model", "diffusion_pytorch_model"]: self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import") return else: self.logger.debug(f"{thing} appears to be a checkpoint file on disk") model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1") elif Path(thing).is_dir() and Path(thing, "model_index.json").exists(): self.logger.debug(f"{thing} appears to be a diffusers file on disk") model_name = self.import_diffuser_model( thing, vae=dict(repo_id="stabilityai/sd-vae-ft-mse"), model_name=model_name, description=description, commit_to_conf=commit_to_conf, ) elif Path(thing).is_dir(): if (Path(thing) / "model_index.json").exists(): self.logger.debug(f"{thing} appears to be a diffusers model.") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) else: self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import") for m in list(Path(thing).rglob("*.ckpt")) + list( Path(thing).rglob("*.safetensors") ): if model_name := self.heuristic_import( str(m), commit_to_conf=commit_to_conf ): self.logger.info(f"{model_name} successfully imported") return model_name elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing): self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name]) return model_name else: self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id") # Model_path is set in the event of a legacy checkpoint file. # If not set, we're all done if not model_path: return if model_path.stem in self.config: # already imported self.logger.debug("Already imported. Skipping") return model_path.stem # another round of heuristics to guess the correct config file. checkpoint = None if model_path.suffix in [".ckpt", ".pt"]: self.cache.scan_model(model_path, model_path) checkpoint = torch.load(model_path) else: checkpoint = safetensors.torch.load_file(model_path) # additional probing needed if no config file provided if model_config_file is None: # look for a like-named .yaml file in same directory if model_path.with_suffix(".yaml").exists(): model_config_file = model_path.with_suffix(".yaml") self.logger.debug(f"Using config file {model_config_file.name}") else: model_type = self.probe_model_type(checkpoint) if model_type == SDLegacyType.V1: self.logger.debug("SD-v1 model detected") model_config_file = self.globals.legacy_conf_path / "v1-inference.yaml" elif model_type == SDLegacyType.V1_INPAINT: self.logger.debug("SD-v1 inpainting model detected") model_config_file = self.globals.legacy_conf_path / "v1-inpainting-inference.yaml", elif model_type == SDLegacyType.V2_v: self.logger.debug("SD-v2-v model detected") model_config_file = self.globals.legacy_conf_path / "v2-inference-v.yaml" elif model_type == SDLegacyType.V2_e: self.logger.debug("SD-v2-e model detected") model_config_file = self.globals.legacy_conf_path / "v2-inference.yaml" elif model_type == SDLegacyType.V2: self.logger.warning( f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path." ) return else: self.logger.warning( f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path." ) return if not model_config_file and config_file_callback: model_config_file = config_file_callback(model_path) # despite our best efforts, we could not find a model config file, so give up if not model_config_file: return # look for a custom vae, a like-named file ending with .vae in the same directory vae_path = None for suffix in ["pt", "ckpt", "safetensors"]: if (model_path.with_suffix(f".vae.{suffix}")).exists(): vae_path = model_path.with_suffix(f".vae.{suffix}") self.logger.debug(f"Using VAE file {vae_path.name}") vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse") diffuser_path = self.globals.converted_ckpts_dir / model_path.stem with SilenceWarnings(): model_name = self.convert_and_import( model_path, diffusers_path=diffuser_path, vae=vae, vae_path=str(vae_path), model_name=model_name, model_description=description, original_config_file=model_config_file, commit_to_conf=commit_to_conf, scan_needed=False, ) return model_name def convert_ckpt_and_cache(self, mconfig: DictConfig) -> Path: """ Convert the checkpoint model indicated in mconfig into a diffusers, cache it to disk, and return Path to converted file. If already on disk then just returns Path. """ weights = self.globals.root_dir / mconfig.weights config_file = self.globals.root_dir / mconfig.config diffusers_path = self.globals.converted_ckpts_dir / weights.stem # return cached version if it exists if diffusers_path.exists(): return diffusers_path vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig) # to avoid circular import errors from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers with SilenceWarnings(): convert_ckpt_to_diffusers( weights, diffusers_path, extract_ema=True, original_config_file=config_file, vae=vae_model, vae_path=str(self.globals.root_dir / vae_ckpt_path) if vae_ckpt_path else None, scan_needed=True, ) return diffusers_path def convert_vae_ckpt_and_cache(self, mconfig: DictConfig) -> Path: """ Convert the VAE indicated in mconfig into a diffusers AutoencoderKL object, cache it to disk, and return Path to converted file. If already on disk then just returns Path. """ root = self.globals.root_dir weights_file = root / mconfig.weights config_file = root / mconfig.config diffusers_path = self.globals.converted_ckpts_dir / weights_file.stem image_size = mconfig.get('width') or mconfig.get('height') or 512 # return cached version if it exists if diffusers_path.exists(): return diffusers_path # this avoids circular import error from .convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers checkpoint = torch.load(weights_file, map_location="cpu")\ if weights_file.suffix in ['.ckpt','.pt'] \ else safetensors.torch.load_file(weights_file) # sometimes weights are hidden under "state_dict", and sometimes not if "state_dict" in checkpoint: checkpoint = checkpoint["state_dict"] config = OmegaConf.load(config_file) vae_model = convert_ldm_vae_to_diffusers( checkpoint = checkpoint, vae_config = config, image_size = image_size ) vae_model.save_pretrained( diffusers_path, safe_serialization=is_safetensors_available() ) return diffusers_path def _get_vae_for_conversion( self, weights: Path, mconfig: DictConfig ) -> Tuple[Path, AutoencoderKL]: # VAE handling is convoluted # 1. If there is a .vae.ckpt file sharing same stem as weights, then use # it as the vae_path passed to convert vae_ckpt_path = None vae_diffusers_location = None vae_model = None for suffix in ["pt", "ckpt", "safetensors"]: if (weights.with_suffix(f".vae.{suffix}")).exists(): vae_ckpt_path = weights.with_suffix(f".vae.{suffix}") self.logger.debug(f"Using VAE file {vae_ckpt_path.name}") if vae_ckpt_path: return (vae_ckpt_path, None) # 2. If mconfig has a vae weights path, then we use that as vae_path vae_config = mconfig.get('vae') if vae_config and isinstance(vae_config,str): vae_ckpt_path = vae_config return (vae_ckpt_path, None) # 3. If mconfig has a vae dict, then we use it as the diffusers-style vae if vae_config and isinstance(vae_config,DictConfig): vae_diffusers_location = self.globals.root_dir / vae_config.get('path') \ if vae_config.get('path') \ else vae_config.get('repo_id') # 4. Otherwise, we use stabilityai/sd-vae-ft-mse "because it works" else: vae_diffusers_location = "stabilityai/sd-vae-ft-mse" if vae_diffusers_location: vae_model = self.cache.get_model(vae_diffusers_location, SDModelType.Vae).model return (None, vae_model) return (None, None) def convert_and_import( self, ckpt_path: Path, diffusers_path: Path, model_name=None, model_description=None, vae: dict = None, vae_path: Path = None, original_config_file: Path = None, commit_to_conf: Path = None, scan_needed: bool = True, ) -> str: """ Convert a legacy ckpt weights file to diffuser model and import into models.yaml. """ ckpt_path = self._resolve_path(ckpt_path, "models/ldm/stable-diffusion-v1") if original_config_file: original_config_file = self._resolve_path( original_config_file, "configs/stable-diffusion" ) new_config = None if diffusers_path.exists(): self.logger.error( f"The path {str(diffusers_path)} already exists. Please move or remove it and try again." ) return model_name = model_name or diffusers_path.name model_description = model_description or f"Converted version of {model_name}" self.logger.debug(f"Converting {model_name} to diffusers (30-60s)") # to avoid circular import errors from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers try: # By passing the specified VAE to the conversion function, the autoencoder # will be built into the model rather than tacked on afterward via the config file vae_model = None if vae: vae_location = self.globals.root_dir / vae.get('path') \ if vae.get('path') \ else vae.get('repo_id') vae_model = self.cache.get_model(vae_location, SDModelType.Vae).model vae_path = None convert_ckpt_to_diffusers( ckpt_path, diffusers_path, extract_ema=True, original_config_file=original_config_file, vae=vae_model, vae_path=vae_path, scan_needed=scan_needed, ) self.logger.debug( f"Success. Converted model is now located at {str(diffusers_path)}" ) self.logger.debug(f"Writing new config file entry for {model_name}") new_config = dict( path=str(diffusers_path), description=model_description, format="diffusers", ) if self.model_exists(model_name, SDModelType.Diffusers): self.del_model(model_name, SDModelType.Diffusers) self.add_model( model_name, SDModelType.Diffusers, new_config, True ) if commit_to_conf: self.commit(commit_to_conf) self.logger.debug("Conversion succeeded") except Exception as e: self.logger.warning(f"Conversion failed: {str(e)}") self.logger.warning( "If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)" ) return model_name def search_models(self, search_folder): self.logger.info(f"Finding Models In: {search_folder}") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_safetensors = Path(search_folder).glob("**/*.safetensors") ckpt_files = [x for x in models_folder_ckpt if x.is_file()] safetensor_files = [x for x in models_folder_safetensors if x.is_file()] files = ckpt_files + safetensor_files found_models = [] for file in files: location = str(file.resolve()).replace("\\", "/") if ( "model.safetensors" not in location and "diffusion_pytorch_model.safetensors" not in location ): found_models.append({"name": file.stem, "location": location}) return search_folder, found_models def commit(self, conf_file: Path=None) -> None: """ Write current configuration out to the indicated file. """ yaml_str = OmegaConf.to_yaml(self.config) config_file_path = conf_file or self.config_path assert config_file_path is not None,'no config file path to write to' config_file_path = self.globals.root_dir / config_file_path tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp") with open(tmpfile, "w", encoding="utf-8") as outfile: outfile.write(self.preamble()) outfile.write(yaml_str) os.replace(tmpfile, config_file_path) def preamble(self) -> str: """ Returns the preamble for the config file. """ return textwrap.dedent( """\ # This file describes the alternative machine learning models # available to InvokeAI script. """ ) @classmethod def _delete_model_from_cache(cls,repo_id): cache_info = scan_cache_dir(get_invokeai_config().cache_dir) # I'm sure there is a way to do this with comprehensions # but the code quickly became incomprehensible! hashes_to_delete = set() for repo in cache_info.repos: if repo.repo_id == repo_id: for revision in repo.revisions: hashes_to_delete.add(revision.commit_hash) strategy = cache_info.delete_revisions(*hashes_to_delete) cls.logger.warning( f"Deletion of this model is expected to free {strategy.expected_freed_size_str}" ) strategy.execute() @staticmethod def _abs_path(path: str | Path) -> Path: globals = get_invokeai_config() if path is None or Path(path).is_absolute(): return path return Path(globals.root_dir, path).resolve() # This is not the same as global_resolve_path(), which prepends # Globals.root. def _resolve_path( self, source: Union[str, Path], dest_directory: str ) -> Optional[Path]: resolved_path = None if str(source).startswith(("http:", "https:", "ftp:")): dest_directory = self.globals.root_dir / dest_directory dest_directory.mkdir(parents=True, exist_ok=True) resolved_path = download_with_resume(str(source), dest_directory) else: resolved_path = self.globals.root_dir / source return resolved_path def _update_config_file_version(self): """ This gets called at object init time and will update from older versions of the config file to new ones as necessary. """ current_version = self.config.get("_version","1.0.0") if version.parse(current_version) < version.parse(CONFIG_FILE_VERSION): self.logger.warning(f'models.yaml version {current_version} detected. Updating to {CONFIG_FILE_VERSION}') self.logger.warning('The original file will be renamed models.yaml.orig') if self.config_path: old_file = Path(self.config_path) new_name = old_file.parent / 'models.yaml.orig' old_file.replace(new_name) new_config = OmegaConf.create() new_config["_version"] = CONFIG_FILE_VERSION for model_key in self.config: old_stanza = self.config[model_key] if not isinstance(old_stanza,DictConfig): continue # ignore old and ugly way of associating a legacy # vae with a legacy checkpont model if old_stanza.get("config") and '/VAE/' in old_stanza.get("config"): continue # bare keys are updated to be prefixed with 'diffusers/' if '/' not in model_key: new_key = f'diffusers/{model_key}' else: new_key = model_key if old_stanza.get('format')=='diffusers': model_format = 'folder' elif old_stanza.get('weights') and Path(old_stanza.get('weights')).suffix == '.ckpt': model_format = 'ckpt' elif old_stanza.get('weights') and Path(old_stanza.get('weights')).suffix == '.safetensors': model_format = 'safetensors' else: model_format = old_stanza.get('format') # copy fields over manually rather than doing a copy() or deepcopy() # in order to avoid bringing in unwanted fields. new_config[new_key] = dict( description = old_stanza.get('description'), format = model_format, ) for field in ["repo_id", "path", "weights", "config", "vae"]: if field_value := old_stanza.get(field): new_config[new_key].update({field: field_value}) self.config = new_config if self.config_path: self.commit()