# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0) # and modified as needed # tencent-ailab comment: # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py import torch import torch.nn as nn import torch.nn.functional as F from diffusers.models.attention_processor import AttnProcessor2_0 as DiffusersAttnProcessor2_0 from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights # Create a version of AttnProcessor2_0 that is a sub-class of nn.Module. This is required for IP-Adapter state_dict # loading. class AttnProcessor2_0(DiffusersAttnProcessor2_0, nn.Module): def __init__(self): DiffusersAttnProcessor2_0.__init__(self) nn.Module.__init__(self) def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ip_adapter_image_prompt_embeds=None, ): """Re-definition of DiffusersAttnProcessor2_0.__call__(...) that accepts and ignores the ip_adapter_image_prompt_embeds parameter. """ return DiffusersAttnProcessor2_0.__call__( self, attn, hidden_states, encoder_hidden_states, attention_mask, temb ) class IPAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapater for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. scale (`float`, defaults to 1.0): the weight scale of image prompt. """ def __init__(self, weights: list[IPAttentionProcessorWeights]): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.weights = weights def __call__( self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, ip_adapter_image_prompt_embeds=None, ): residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: # If encoder_hidden_states is not None, then we are doing cross-attention, not self-attention. In this case, # we will apply IP-Adapter conditioning. We validate the inputs for IP-Adapter conditioning here. assert ip_adapter_image_prompt_embeds is not None assert len(ip_adapter_image_prompt_embeds) == len(self.weights) for ipa_embed, ipa_weights in zip(ip_adapter_image_prompt_embeds, self.weights): # The batch dimensions should match. assert ipa_embed.shape[0] == encoder_hidden_states.shape[0] # The channel dimensions should match. assert ipa_embed.shape[2] == encoder_hidden_states.shape[2] ip_hidden_states = ipa_embed ip_key = ipa_weights.to_k_ip(ip_hidden_states) ip_value = ipa_weights.to_v_ip(ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # The output of sdpa has shape: (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + ipa_weights.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states