#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. """ This is the npyscreen frontend to the model installation application. The work is actually done in backend code in model_install_backend.py. """ import argparse import os import sys from argparse import Namespace from pathlib import Path from typing import List import npyscreen import torch from npyscreen import widget from omegaconf import OmegaConf from shutil import get_terminal_size from ..devices import choose_precision, choose_torch_device from ..globals import Globals, global_config_dir from .model_install_backend import (Dataset_path, default_config_file, default_dataset, get_root, install_requested_models, recommended_datasets, ) from .widgets import (MultiSelectColumns, TextBox, OffsetButtonPress, CenteredTitleText, set_min_terminal_size, ) # minimum size for the UI MIN_COLS = 120 MIN_LINES = 45 class addModelsForm(npyscreen.FormMultiPage): # for responsive resizing - disabled #FIX_MINIMUM_SIZE_WHEN_CREATED = False def __init__(self, parentApp, name, multipage=False, *args, **keywords): self.multipage = multipage self.initial_models = OmegaConf.load(Dataset_path) try: self.existing_models = OmegaConf.load(default_config_file()) except: self.existing_models = dict() self.starter_model_list = [ x for x in list(self.initial_models.keys()) if x not in self.existing_models ] self.installed_models = dict() super().__init__(parentApp=parentApp, name=name, *args, **keywords) def create(self): window_width, window_height = get_terminal_size() starter_model_labels = self._get_starter_model_labels() recommended_models = [ x for x in self.starter_model_list if self.initial_models[x].get("recommended", False) ] self.installed_models = sorted( [x for x in list(self.initial_models.keys()) if x in self.existing_models] ) self.nextrely -= 1 self.add_widget_intelligent( npyscreen.FixedText, value="Use ctrl-N and ctrl-P to move to the ext and

revious fields,", editable=False, color='CAUTION', ) self.add_widget_intelligent( npyscreen.FixedText, value="Use cursor arrows to make a selection, and space to toggle checkboxes.", editable=False, color='CAUTION' ) self.nextrely += 1 if len(self.installed_models) > 0: self.add_widget_intelligent( CenteredTitleText, name="== INSTALLED STARTER MODELS ==", editable=False, color="CONTROL", ) self.nextrely -= 1 self.add_widget_intelligent( CenteredTitleText, name="Currently installed starter models. Uncheck to delete:", editable=False, labelColor="CAUTION", ) self.nextrely -= 1 columns = self._get_columns() self.previously_installed_models = self.add_widget_intelligent( MultiSelectColumns, columns=columns, values=self.installed_models, value=[x for x in range(0, len(self.installed_models))], max_height=1 + len(self.installed_models) // columns, relx=4, slow_scroll=True, scroll_exit=True, ) self.purge_deleted = self.add_widget_intelligent( npyscreen.Checkbox, name="Purge deleted models from disk", value=False, scroll_exit=True, relx=4, ) self.nextrely += 1 if len(self.starter_model_list) > 0: self.add_widget_intelligent( CenteredTitleText, name="== STARTER MODELS (recommended ones selected) ==", editable=False, color="CONTROL", ) self.nextrely -= 1 self.add_widget_intelligent( CenteredTitleText, name="Select from a starter set of Stable Diffusion models from HuggingFace.", editable=False, labelColor="CAUTION", ) self.nextrely -= 1 # if user has already installed some initial models, then don't patronize them # by showing more recommendations show_recommended = not self.existing_models self.models_selected = self.add_widget_intelligent( npyscreen.MultiSelect, name="Install Starter Models", values=starter_model_labels, value=[ self.starter_model_list.index(x) for x in self.starter_model_list if show_recommended and x in recommended_models ], max_height=len(starter_model_labels) + 1, relx=4, scroll_exit=True, ) self.add_widget_intelligent( CenteredTitleText, name='== IMPORT LOCAL AND REMOTE MODELS ==', editable=False, color="CONTROL", ) self.nextrely -= 1 for line in [ "In the box below, enter URLs, file paths, or HuggingFace repository IDs.", "Separate model names by lines or whitespace (Use shift-control-V to paste):", ]: self.add_widget_intelligent( CenteredTitleText, name=line, editable=False, labelColor="CONTROL", relx = 4, ) self.nextrely -= 1 self.import_model_paths = self.add_widget_intelligent( TextBox, max_height=7, scroll_exit=True, editable=True, relx=4 ) self.nextrely += 1 self.show_directory_fields = self.add_widget_intelligent( npyscreen.FormControlCheckbox, name="Select a directory for models to import", value=False, ) self.autoload_directory = self.add_widget_intelligent( npyscreen.TitleFilename, name="Directory ( autocompletes):", select_dir=True, must_exist=True, use_two_lines=False, labelColor="DANGER", begin_entry_at=34, scroll_exit=True, ) self.autoscan_on_startup = self.add_widget_intelligent( npyscreen.Checkbox, name="Scan this directory each time InvokeAI starts for new models to import", value=False, relx=4, scroll_exit=True, ) self.nextrely += 1 self.convert_models = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="== CONVERT IMPORTED MODELS INTO DIFFUSERS==", values=["Keep original format", "Convert to diffusers"], value=0, begin_entry_at=4, max_height=4, hidden=True, # will appear when imported models box is edited scroll_exit=True, ) self.cancel = self.add_widget_intelligent( npyscreen.ButtonPress, name="CANCEL", rely=-3, when_pressed_function=self.on_cancel, ) done_label = "DONE" back_label = "BACK" button_length = len(done_label) button_offset = 0 if self.multipage: button_length += len(back_label) + 1 button_offset += len(back_label) + 1 self.back_button = self.add_widget_intelligent( OffsetButtonPress, name=back_label, relx=(window_width - button_length) // 2, offset=-3, rely=-3, when_pressed_function=self.on_back, ) self.ok_button = self.add_widget_intelligent( OffsetButtonPress, name=done_label, offset=+3, relx=button_offset + 1 + (window_width - button_length) // 2, rely=-3, when_pressed_function=self.on_ok, ) for i in [self.autoload_directory, self.autoscan_on_startup]: self.show_directory_fields.addVisibleWhenSelected(i) self.show_directory_fields.when_value_edited = self._clear_scan_directory self.import_model_paths.when_value_edited = self._show_hide_convert self.autoload_directory.when_value_edited = self._show_hide_convert def resize(self): super().resize() if hasattr(self,'models_selected'): self.models_selected.values = self._get_starter_model_labels() def _clear_scan_directory(self): if not self.show_directory_fields.value: self.autoload_directory.value = "" def _show_hide_convert(self): model_paths = self.import_model_paths.value or "" autoload_directory = self.autoload_directory.value or "" self.convert_models.hidden = ( len(model_paths) == 0 and len(autoload_directory) == 0 ) def _get_starter_model_labels(self) -> List[str]: window_width, window_height = get_terminal_size() label_width = 25 checkbox_width = 4 spacing_width = 2 description_width = window_width - label_width - checkbox_width - spacing_width im = self.initial_models names = self.starter_model_list descriptions = [ im[x].description[0 : description_width - 3] + "..." if len(im[x].description) > description_width else im[x].description for x in names ] return [ f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0, len(names)) ] def _get_columns(self) -> int: window_width, window_height = get_terminal_size() cols = ( 4 if window_width > 240 else 3 if window_width > 160 else 2 if window_width > 80 else 1 ) return min(cols, len(self.installed_models)) def on_ok(self): self.parentApp.setNextForm(None) self.editing = False self.parentApp.user_cancelled = False self.marshall_arguments() def on_back(self): self.parentApp.switchFormPrevious() self.editing = False def on_cancel(self): if npyscreen.notify_yes_no( "Are you sure you want to cancel?\nYou may re-run this script later using the invoke.sh or invoke.bat command.\n" ): self.parentApp.setNextForm(None) self.parentApp.user_cancelled = True self.editing = False def marshall_arguments(self): """ Assemble arguments and store as attributes of the application: .starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml True => Install False => Remove .scan_directory: Path to a directory of models to scan and import .autoscan_on_startup: True if invokeai should scan and import at startup time .import_model_paths: list of URLs, repo_ids and file paths to import .convert_to_diffusers: if True, convert legacy checkpoints into diffusers """ # we're using a global here rather than storing the result in the parentapp # due to some bug in npyscreen that is causing attributes to be lost selections = self.parentApp.user_selections # starter models to install/remove if hasattr(self,'models_selected'): starter_models = dict( map( lambda x: (self.starter_model_list[x], True), self.models_selected.value ) ) else: starter_models = dict() selections.purge_deleted_models = False if hasattr(self, "previously_installed_models"): unchecked = [ self.previously_installed_models.values[x] for x in range(0, len(self.previously_installed_models.values)) if x not in self.previously_installed_models.value ] starter_models.update(map(lambda x: (x, False), unchecked)) selections.purge_deleted_models = self.purge_deleted.value selections.starter_models = starter_models # load directory and whether to scan on startup if self.show_directory_fields.value: selections.scan_directory = self.autoload_directory.value selections.autoscan_on_startup = self.autoscan_on_startup.value else: selections.scan_directory = None selections.autoscan_on_startup = False # URLs and the like selections.import_model_paths = self.import_model_paths.value.split() selections.convert_to_diffusers = self.convert_models.value[0] == 1 class AddModelApplication(npyscreen.NPSAppManaged): def __init__(self): super().__init__() self.user_cancelled = False self.user_selections = Namespace( starter_models=None, purge_deleted_models=False, scan_directory=None, autoscan_on_startup=None, import_model_paths=None, convert_to_diffusers=None, ) def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.main_form = self.addForm( "MAIN", addModelsForm, name="Install Stable Diffusion Models" ) # -------------------------------------------------------- def process_and_execute(opt: Namespace, selections: Namespace): models_to_remove = [ x for x in selections.starter_models if not selections.starter_models[x] ] models_to_install = [ x for x in selections.starter_models if selections.starter_models[x] ] directory_to_scan = selections.scan_directory scan_at_startup = selections.autoscan_on_startup potential_models_to_install = selections.import_model_paths convert_to_diffusers = selections.convert_to_diffusers install_requested_models( install_initial_models=models_to_install, remove_models=models_to_remove, scan_directory=Path(directory_to_scan) if directory_to_scan else None, external_models=potential_models_to_install, scan_at_startup=scan_at_startup, convert_to_diffusers=convert_to_diffusers, precision="float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())), purge_deleted=selections.purge_deleted_models, config_file_path=Path(opt.config_file) if opt.config_file else None, ) # -------------------------------------------------------- def select_and_download_models(opt: Namespace): precision = ( "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())) ) if opt.default_only: install_requested_models( install_initial_models=default_dataset(), precision=precision, ) elif opt.yes_to_all: install_requested_models( install_initial_models=recommended_datasets(), precision=precision, ) else: set_min_terminal_size(MIN_COLS, MIN_LINES) installApp = AddModelApplication() installApp.run() if not installApp.user_cancelled: process_and_execute(opt, installApp.user_selections) # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="only install the default model", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() # setting a global here Globals.root = os.path.expanduser(get_root(opt.root) or "") if not global_config_dir().exists(): print( ">> Your InvokeAI root directory is not set up. Calling invokeai-configure." ) import ldm.invoke.config.invokeai_configure ldm.invoke.config.invokeai_configure.main() sys.exit(0) try: select_and_download_models(opt) except AssertionError as e: print(str(e)) sys.exit(-1) except KeyboardInterrupt: print("\nGoodbye! Come back soon.") except widget.NotEnoughSpaceForWidget as e: if str(e).startswith("Height of 1 allocated"): print( "** Insufficient vertical space for the interface. Please make your window taller and try again" ) elif str(e).startswith("addwstr"): print( "** Insufficient horizontal space for the interface. Please make your window wider and try again." ) # ------------------------------------- if __name__ == "__main__": main()