# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) import math from contextlib import ExitStack from functools import singledispatchmethod from typing import List, Literal, Optional, Union import einops import numpy as np import torch import torchvision.transforms as T from diffusers import AutoencoderKL, AutoencoderTiny from diffusers.image_processor import VaeImageProcessor from diffusers.models.adapter import T2IAdapter from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) from diffusers.schedulers import DPMSolverSDEScheduler from diffusers.schedulers import SchedulerMixin as Scheduler from pydantic import field_validator from torchvision.transforms.functional import resize as tv_resize from invokeai.app.invocations.ip_adapter import IPAdapterField from invokeai.app.invocations.primitives import ( DenoiseMaskField, DenoiseMaskOutput, ImageField, ImageOutput, LatentsField, LatentsOutput, build_latents_output, ) from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin from invokeai.app.shared.fields import FieldDescriptions from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.step_callback import stable_diffusion_step_callback from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus from invokeai.backend.model_management.models import ModelType, SilenceWarnings from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ( BasicConditioningInfo, ConditioningData, IPAdapterConditioningInfo, ) from ...backend.model_management.lora import ModelPatcher from ...backend.model_management.models import BaseModelType from ...backend.model_management.seamless import set_seamless from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion.diffusers_pipeline import ( ControlNetData, IPAdapterData, StableDiffusionGeneratorPipeline, T2IAdapterData, image_resized_to_grid_as_tensor, ) from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP from ...backend.util.devices import choose_precision, choose_torch_device from .baseinvocation import ( BaseInvocation, BaseInvocationOutput, Input, InputField, InvocationContext, OutputField, UIType, WithMetadata, invocation, invocation_output, ) from .compel import ConditioningField from .controlnet_image_processors import ControlField from .model import ModelInfo, UNetField, VaeField if choose_torch_device() == torch.device("mps"): from torch import mps DEFAULT_PRECISION = choose_precision(choose_torch_device()) SAMPLER_NAME_VALUES = Literal[tuple(SCHEDULER_MAP.keys())] # HACK: Many nodes are currently hard-coded to use a fixed latent scale factor of 8. This is fragile, and will need to # be addressed if future models use a different latent scale factor. Also, note that there may be places where the scale # factor is hard-coded to a literal '8' rather than using this constant. # The ratio of image:latent dimensions is LATENT_SCALE_FACTOR:1, or 8:1. LATENT_SCALE_FACTOR = 8 @invocation_output("scheduler_output") class SchedulerOutput(BaseInvocationOutput): scheduler: SAMPLER_NAME_VALUES = OutputField(description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler) @invocation( "scheduler", title="Scheduler", tags=["scheduler"], category="latents", version="1.0.0", ) class SchedulerInvocation(BaseInvocation): """Selects a scheduler.""" scheduler: SAMPLER_NAME_VALUES = InputField( default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler, ) def invoke(self, context: InvocationContext) -> SchedulerOutput: return SchedulerOutput(scheduler=self.scheduler) @invocation( "create_denoise_mask", title="Create Denoise Mask", tags=["mask", "denoise"], category="latents", version="1.0.0", ) class CreateDenoiseMaskInvocation(BaseInvocation): """Creates mask for denoising model run.""" vae: VaeField = InputField(description=FieldDescriptions.vae, input=Input.Connection, ui_order=0) image: Optional[ImageField] = InputField(default=None, description="Image which will be masked", ui_order=1) mask: ImageField = InputField(description="The mask to use when pasting", ui_order=2) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=3) fp32: bool = InputField( default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32, ui_order=4, ) def prep_mask_tensor(self, mask_image): if mask_image.mode != "L": mask_image = mask_image.convert("L") mask_tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False) if mask_tensor.dim() == 3: mask_tensor = mask_tensor.unsqueeze(0) # if shape is not None: # mask_tensor = tv_resize(mask_tensor, shape, T.InterpolationMode.BILINEAR) return mask_tensor @torch.no_grad() def invoke(self, context: InvocationContext) -> DenoiseMaskOutput: if self.image is not None: image = context.services.images.get_pil_image(self.image.image_name) image = image_resized_to_grid_as_tensor(image.convert("RGB")) if image.dim() == 3: image = image.unsqueeze(0) else: image = None mask = self.prep_mask_tensor( context.services.images.get_pil_image(self.mask.image_name), ) if image is not None: vae_info = context.services.model_manager.get_model( **self.vae.vae.model_dump(), context=context, ) img_mask = tv_resize(mask, image.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False) masked_image = image * torch.where(img_mask < 0.5, 0.0, 1.0) # TODO: masked_latents = ImageToLatentsInvocation.vae_encode(vae_info, self.fp32, self.tiled, masked_image.clone()) masked_latents_name = f"{context.graph_execution_state_id}__{self.id}_masked_latents" context.services.latents.save(masked_latents_name, masked_latents) else: masked_latents_name = None mask_name = f"{context.graph_execution_state_id}__{self.id}_mask" context.services.latents.save(mask_name, mask) return DenoiseMaskOutput( denoise_mask=DenoiseMaskField( mask_name=mask_name, masked_latents_name=masked_latents_name, ), ) def get_scheduler( context: InvocationContext, scheduler_info: ModelInfo, scheduler_name: str, seed: int, ) -> Scheduler: scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"]) orig_scheduler_info = context.services.model_manager.get_model( **scheduler_info.model_dump(), context=context, ) with orig_scheduler_info as orig_scheduler: scheduler_config = orig_scheduler.config if "_backup" in scheduler_config: scheduler_config = scheduler_config["_backup"] scheduler_config = { **scheduler_config, **scheduler_extra_config, "_backup": scheduler_config, } # make dpmpp_sde reproducable(seed can be passed only in initializer) if scheduler_class is DPMSolverSDEScheduler: scheduler_config["noise_sampler_seed"] = seed scheduler = scheduler_class.from_config(scheduler_config) # hack copied over from generate.py if not hasattr(scheduler, "uses_inpainting_model"): scheduler.uses_inpainting_model = lambda: False return scheduler @invocation( "denoise_latents", title="Denoise Latents", tags=["latents", "denoise", "txt2img", "t2i", "t2l", "img2img", "i2i", "l2l"], category="latents", version="1.5.1", ) class DenoiseLatentsInvocation(BaseInvocation): """Denoises noisy latents to decodable images""" positive_conditioning: Union[ConditioningField, list[ConditioningField]] = InputField( description=FieldDescriptions.positive_cond, input=Input.Connection, ui_order=0 ) negative_conditioning: ConditioningField = InputField( description=FieldDescriptions.negative_cond, input=Input.Connection, ui_order=1 ) noise: Optional[LatentsField] = InputField( default=None, description=FieldDescriptions.noise, input=Input.Connection, ui_order=3, ) steps: int = InputField(default=10, gt=0, description=FieldDescriptions.steps) cfg_scale: Union[float, List[float]] = InputField( default=7.5, ge=1, description=FieldDescriptions.cfg_scale, title="CFG Scale" ) denoising_start: float = InputField( default=0.0, ge=0, le=1, description=FieldDescriptions.denoising_start, ) denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end) scheduler: SAMPLER_NAME_VALUES = InputField( default="euler", description=FieldDescriptions.scheduler, ui_type=UIType.Scheduler, ) unet: UNetField = InputField( description=FieldDescriptions.unet, input=Input.Connection, title="UNet", ui_order=2, ) control: Optional[Union[ControlField, list[ControlField]]] = InputField( default=None, input=Input.Connection, ui_order=5, ) ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]] = InputField( description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection, ui_order=6, ) t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]] = InputField( description=FieldDescriptions.t2i_adapter, title="T2I-Adapter", default=None, input=Input.Connection, ui_order=7, ) cfg_rescale_multiplier: float = InputField( title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier ) latents: Optional[LatentsField] = InputField( default=None, description=FieldDescriptions.latents, input=Input.Connection, ui_order=4, ) denoise_mask: Optional[DenoiseMaskField] = InputField( default=None, description=FieldDescriptions.mask, input=Input.Connection, ui_order=8, ) @field_validator("cfg_scale") def ge_one(cls, v): """validate that all cfg_scale values are >= 1""" if isinstance(v, list): for i in v: if i < 1: raise ValueError("cfg_scale must be greater than 1") else: if v < 1: raise ValueError("cfg_scale must be greater than 1") return v # TODO: pass this an emitter method or something? or a session for dispatching? def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState, base_model: BaseModelType, ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.model_dump(), source_node_id=source_node_id, base_model=base_model, ) def get_conditioning_data( self, context: InvocationContext, scheduler, unet, seed, ) -> ConditioningData: # self.positive_conditioning could be a list or a single ConditioningField. Normalize to a list here. positive_conditioning_list = self.positive_conditioning if not isinstance(positive_conditioning_list, list): positive_conditioning_list = [positive_conditioning_list] text_embeddings: list[BasicConditioningInfo] = [] text_embeddings_masks: list[Optional[torch.Tensor]] = [] for positive_conditioning in positive_conditioning_list: positive_cond_data = context.services.latents.get(positive_conditioning.conditioning_name) text_embeddings.append(positive_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype)) mask_name = positive_conditioning.mask_name mask = None if mask_name is not None: mask = context.services.latents.get(mask_name) text_embeddings_masks.append(mask) negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name) uc = negative_cond_data.conditionings[0].to(device=unet.device, dtype=unet.dtype) conditioning_data = ConditioningData( unconditioned_embeddings=uc, text_embeddings=text_embeddings, text_embedding_masks=text_embeddings_masks, guidance_scale=self.cfg_scale, guidance_rescale_multiplier=self.cfg_rescale_multiplier, postprocessing_settings=PostprocessingSettings( threshold=0.0, # threshold, warmup=0.2, # warmup, h_symmetry_time_pct=None, # h_symmetry_time_pct, v_symmetry_time_pct=None, # v_symmetry_time_pct, ), ) conditioning_data = conditioning_data.add_scheduler_args_if_applicable( scheduler, # for ddim scheduler eta=0.0, # ddim_eta # for ancestral and sde schedulers # flip all bits to have noise different from initial generator=torch.Generator(device=unet.device).manual_seed(seed ^ 0xFFFFFFFF), ) return conditioning_data def create_pipeline( self, unet, scheduler, ) -> StableDiffusionGeneratorPipeline: # TODO: # configure_model_padding( # unet, # self.seamless, # self.seamless_axes, # ) class FakeVae: class FakeVaeConfig: def __init__(self): self.block_out_channels = [0] def __init__(self): self.config = FakeVae.FakeVaeConfig() return StableDiffusionGeneratorPipeline( vae=FakeVae(), # TODO: oh... text_encoder=None, tokenizer=None, unet=unet, scheduler=scheduler, safety_checker=None, feature_extractor=None, requires_safety_checker=False, ) def prep_control_data( self, context: InvocationContext, control_input: Union[ControlField, List[ControlField]], latents_shape: List[int], exit_stack: ExitStack, do_classifier_free_guidance: bool = True, ) -> List[ControlNetData]: # Assuming fixed dimensional scaling of LATENT_SCALE_FACTOR. control_height_resize = latents_shape[2] * LATENT_SCALE_FACTOR control_width_resize = latents_shape[3] * LATENT_SCALE_FACTOR if control_input is None: control_list = None elif isinstance(control_input, list) and len(control_input) == 0: control_list = None elif isinstance(control_input, ControlField): control_list = [control_input] elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField): control_list = control_input else: control_list = None if control_list is None: return None # After above handling, any control that is not None should now be of type list[ControlField]. # FIXME: add checks to skip entry if model or image is None # and if weight is None, populate with default 1.0? controlnet_data = [] for control_info in control_list: control_model = exit_stack.enter_context( context.services.model_manager.get_model( model_name=control_info.control_model.model_name, model_type=ModelType.ControlNet, base_model=control_info.control_model.base_model, context=context, ) ) # control_models.append(control_model) control_image_field = control_info.image input_image = context.services.images.get_pil_image(control_image_field.image_name) # self.image.image_type, self.image.image_name # FIXME: still need to test with different widths, heights, devices, dtypes # and add in batch_size, num_images_per_prompt? # and do real check for classifier_free_guidance? # prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width) control_image = prepare_control_image( image=input_image, do_classifier_free_guidance=do_classifier_free_guidance, width=control_width_resize, height=control_height_resize, # batch_size=batch_size * num_images_per_prompt, # num_images_per_prompt=num_images_per_prompt, device=control_model.device, dtype=control_model.dtype, control_mode=control_info.control_mode, resize_mode=control_info.resize_mode, ) control_item = ControlNetData( model=control_model, # model object image_tensor=control_image, weight=control_info.control_weight, begin_step_percent=control_info.begin_step_percent, end_step_percent=control_info.end_step_percent, control_mode=control_info.control_mode, # any resizing needed should currently be happening in prepare_control_image(), # but adding resize_mode to ControlNetData in case needed in the future resize_mode=control_info.resize_mode, ) controlnet_data.append(control_item) # MultiControlNetModel has been refactored out, just need list[ControlNetData] return controlnet_data def prep_ip_adapter_data( self, context: InvocationContext, ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]], conditioning_data: ConditioningData, exit_stack: ExitStack, ) -> Optional[list[IPAdapterData]]: """If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings to the `conditioning_data` (in-place). """ if ip_adapter is None: return None # ip_adapter could be a list or a single IPAdapterField. Normalize to a list here. if not isinstance(ip_adapter, list): ip_adapter = [ip_adapter] if len(ip_adapter) == 0: return None ip_adapter_data_list = [] conditioning_data.ip_adapter_conditioning = [] for single_ip_adapter in ip_adapter: ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context( context.services.model_manager.get_model( model_name=single_ip_adapter.ip_adapter_model.model_name, model_type=ModelType.IPAdapter, base_model=single_ip_adapter.ip_adapter_model.base_model, context=context, ) ) image_encoder_model_info = context.services.model_manager.get_model( model_name=single_ip_adapter.image_encoder_model.model_name, model_type=ModelType.CLIPVision, base_model=single_ip_adapter.image_encoder_model.base_model, context=context, ) # `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here. single_ipa_images = single_ip_adapter.image if not isinstance(single_ipa_images, list): single_ipa_images = [single_ipa_images] single_ipa_images = [context.services.images.get_pil_image(image.image_name) for image in single_ipa_images] # TODO(ryand): With some effort, the step of running the CLIP Vision encoder could be done before any other # models are needed in memory. This would help to reduce peak memory utilization in low-memory environments. with image_encoder_model_info as image_encoder_model: # Get image embeddings from CLIP and ImageProjModel. image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter_model.get_image_embeds( single_ipa_images, image_encoder_model ) conditioning_data.ip_adapter_conditioning.append( IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds) ) ip_adapter_data_list.append( IPAdapterData( ip_adapter_model=ip_adapter_model, weight=single_ip_adapter.weight, begin_step_percent=single_ip_adapter.begin_step_percent, end_step_percent=single_ip_adapter.end_step_percent, ) ) return ip_adapter_data_list def run_t2i_adapters( self, context: InvocationContext, t2i_adapter: Optional[Union[T2IAdapterField, list[T2IAdapterField]]], latents_shape: list[int], do_classifier_free_guidance: bool, ) -> Optional[list[T2IAdapterData]]: if t2i_adapter is None: return None # Handle the possibility that t2i_adapter could be a list or a single T2IAdapterField. if isinstance(t2i_adapter, T2IAdapterField): t2i_adapter = [t2i_adapter] if len(t2i_adapter) == 0: return None t2i_adapter_data = [] for t2i_adapter_field in t2i_adapter: t2i_adapter_model_info = context.services.model_manager.get_model( model_name=t2i_adapter_field.t2i_adapter_model.model_name, model_type=ModelType.T2IAdapter, base_model=t2i_adapter_field.t2i_adapter_model.base_model, context=context, ) image = context.services.images.get_pil_image(t2i_adapter_field.image.image_name) # The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally. if t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusion1: max_unet_downscale = 8 elif t2i_adapter_field.t2i_adapter_model.base_model == BaseModelType.StableDiffusionXL: max_unet_downscale = 4 else: raise ValueError( f"Unexpected T2I-Adapter base model type: '{t2i_adapter_field.t2i_adapter_model.base_model}'." ) t2i_adapter_model: T2IAdapter with t2i_adapter_model_info as t2i_adapter_model: total_downscale_factor = t2i_adapter_model.total_downscale_factor # Resize the T2I-Adapter input image. # We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the # result will match the latent image's dimensions after max_unet_downscale is applied. t2i_input_height = latents_shape[2] // max_unet_downscale * total_downscale_factor t2i_input_width = latents_shape[3] // max_unet_downscale * total_downscale_factor # Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare # a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the # T2I-Adapter model. # # Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many # of the same requirements (e.g. preserving binary masks during resize). t2i_image = prepare_control_image( image=image, do_classifier_free_guidance=False, width=t2i_input_width, height=t2i_input_height, num_channels=t2i_adapter_model.config.in_channels, device=t2i_adapter_model.device, dtype=t2i_adapter_model.dtype, resize_mode=t2i_adapter_field.resize_mode, ) adapter_state = t2i_adapter_model(t2i_image) if do_classifier_free_guidance: for idx, value in enumerate(adapter_state): adapter_state[idx] = torch.cat([value] * 2, dim=0) t2i_adapter_data.append( T2IAdapterData( adapter_state=adapter_state, weight=t2i_adapter_field.weight, begin_step_percent=t2i_adapter_field.begin_step_percent, end_step_percent=t2i_adapter_field.end_step_percent, ) ) return t2i_adapter_data # original idea by https://github.com/AmericanPresidentJimmyCarter # TODO: research more for second order schedulers timesteps def init_scheduler(self, scheduler, device, steps, denoising_start, denoising_end): if scheduler.config.get("cpu_only", False): scheduler.set_timesteps(steps, device="cpu") timesteps = scheduler.timesteps.to(device=device) else: scheduler.set_timesteps(steps, device=device) timesteps = scheduler.timesteps # skip greater order timesteps _timesteps = timesteps[:: scheduler.order] # get start timestep index t_start_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_start))) t_start_idx = len(list(filter(lambda ts: ts >= t_start_val, _timesteps))) # get end timestep index t_end_val = int(round(scheduler.config.num_train_timesteps * (1 - denoising_end))) t_end_idx = len(list(filter(lambda ts: ts >= t_end_val, _timesteps[t_start_idx:]))) # apply order to indexes t_start_idx *= scheduler.order t_end_idx *= scheduler.order init_timestep = timesteps[t_start_idx : t_start_idx + 1] timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx] num_inference_steps = len(timesteps) // scheduler.order return num_inference_steps, timesteps, init_timestep def prep_inpaint_mask(self, context, latents): if self.denoise_mask is None: return None, None mask = context.services.latents.get(self.denoise_mask.mask_name) mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False) if self.denoise_mask.masked_latents_name is not None: masked_latents = context.services.latents.get(self.denoise_mask.masked_latents_name) else: masked_latents = None return 1 - mask, masked_latents @torch.no_grad() def invoke(self, context: InvocationContext) -> LatentsOutput: with SilenceWarnings(): # this quenches NSFW nag from diffusers seed = None noise = None if self.noise is not None: noise = context.services.latents.get(self.noise.latents_name) seed = self.noise.seed if self.latents is not None: latents = context.services.latents.get(self.latents.latents_name) if seed is None: seed = self.latents.seed if noise is not None and noise.shape[1:] != latents.shape[1:]: raise Exception(f"Incompatable 'noise' and 'latents' shapes: {latents.shape=} {noise.shape=}") elif noise is not None: latents = torch.zeros_like(noise) else: raise Exception("'latents' or 'noise' must be provided!") if seed is None: seed = 0 mask, masked_latents = self.prep_inpaint_mask(context, latents) # TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets, # below. Investigate whether this is appropriate. t2i_adapter_data = self.run_t2i_adapters( context, self.t2i_adapter, latents.shape, do_classifier_free_guidance=True, ) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] def step_callback(state: PipelineIntermediateState): self.dispatch_progress(context, source_node_id, state, self.unet.unet.base_model) def _lora_loader(): for lora in self.unet.loras: lora_info = context.services.model_manager.get_model( **lora.model_dump(exclude={"weight"}), context=context, ) yield (lora_info.context.model, lora.weight) del lora_info return unet_info = context.services.model_manager.get_model( **self.unet.unet.model_dump(), context=context, ) with ( ExitStack() as exit_stack, ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config), set_seamless(unet_info.context.model, self.unet.seamless_axes), unet_info as unet, # Apply the LoRA after unet has been moved to its target device for faster patching. ModelPatcher.apply_lora_unet(unet, _lora_loader()), ): latents = latents.to(device=unet.device, dtype=unet.dtype) if noise is not None: noise = noise.to(device=unet.device, dtype=unet.dtype) if mask is not None: mask = mask.to(device=unet.device, dtype=unet.dtype) if masked_latents is not None: masked_latents = masked_latents.to(device=unet.device, dtype=unet.dtype) scheduler = get_scheduler( context=context, scheduler_info=self.unet.scheduler, scheduler_name=self.scheduler, seed=seed, ) pipeline = self.create_pipeline(unet, scheduler) conditioning_data = self.get_conditioning_data(context, scheduler, unet, seed) controlnet_data = self.prep_control_data( context=context, control_input=self.control, latents_shape=latents.shape, # do_classifier_free_guidance=(self.cfg_scale >= 1.0)) do_classifier_free_guidance=True, exit_stack=exit_stack, ) ip_adapter_data = self.prep_ip_adapter_data( context=context, ip_adapter=self.ip_adapter, conditioning_data=conditioning_data, exit_stack=exit_stack, ) num_inference_steps, timesteps, init_timestep = self.init_scheduler( scheduler, device=unet.device, steps=self.steps, denoising_start=self.denoising_start, denoising_end=self.denoising_end, ) result_latents = pipeline.latents_from_embeddings( latents=latents, timesteps=timesteps, init_timestep=init_timestep, noise=noise, seed=seed, mask=mask, masked_latents=masked_latents, num_inference_steps=num_inference_steps, conditioning_data=conditioning_data, control_data=controlnet_data, ip_adapter_data=ip_adapter_data, t2i_adapter_data=t2i_adapter_data, callback=step_callback, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 result_latents = result_latents.to("cpu") torch.cuda.empty_cache() if choose_torch_device() == torch.device("mps"): mps.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.save(name, result_latents) return build_latents_output(latents_name=name, latents=result_latents, seed=seed) @invocation( "l2i", title="Latents to Image", tags=["latents", "image", "vae", "l2i"], category="latents", version="1.2.0", ) class LatentsToImageInvocation(BaseInvocation, WithMetadata): """Generates an image from latents.""" latents: LatentsField = InputField( description=FieldDescriptions.latents, input=Input.Connection, ) vae: VaeField = InputField( description=FieldDescriptions.vae, input=Input.Connection, ) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32) @torch.no_grad() def invoke(self, context: InvocationContext) -> ImageOutput: latents = context.services.latents.get(self.latents.latents_name) vae_info = context.services.model_manager.get_model( **self.vae.vae.model_dump(), context=context, ) with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae: latents = latents.to(vae.device) if self.fp32: vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: vae.post_quant_conv.to(latents.dtype) vae.decoder.conv_in.to(latents.dtype) vae.decoder.mid_block.to(latents.dtype) else: latents = latents.float() else: vae.to(dtype=torch.float16) latents = latents.half() if self.tiled or context.services.configuration.tiled_decode: vae.enable_tiling() else: vae.disable_tiling() # clear memory as vae decode can request a lot torch.cuda.empty_cache() if choose_torch_device() == torch.device("mps"): mps.empty_cache() with torch.inference_mode(): # copied from diffusers pipeline latents = latents / vae.config.scaling_factor image = vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # denormalize # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 np_image = image.cpu().permute(0, 2, 3, 1).float().numpy() image = VaeImageProcessor.numpy_to_pil(np_image)[0] torch.cuda.empty_cache() if choose_torch_device() == torch.device("mps"): mps.empty_cache() image_dto = context.services.images.create( image=image, image_origin=ResourceOrigin.INTERNAL, image_category=ImageCategory.GENERAL, node_id=self.id, session_id=context.graph_execution_state_id, is_intermediate=self.is_intermediate, metadata=self.metadata, workflow=context.workflow, ) return ImageOutput( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"] @invocation( "lresize", title="Resize Latents", tags=["latents", "resize"], category="latents", version="1.0.0", ) class ResizeLatentsInvocation(BaseInvocation): """Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.""" latents: LatentsField = InputField( description=FieldDescriptions.latents, input=Input.Connection, ) width: int = InputField( ge=64, multiple_of=LATENT_SCALE_FACTOR, description=FieldDescriptions.width, ) height: int = InputField( ge=64, multiple_of=LATENT_SCALE_FACTOR, description=FieldDescriptions.width, ) mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode) antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias) def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) # TODO: device = choose_torch_device() resized_latents = torch.nn.functional.interpolate( latents.to(device), size=(self.height // LATENT_SCALE_FACTOR, self.width // LATENT_SCALE_FACTOR), mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 resized_latents = resized_latents.to("cpu") torch.cuda.empty_cache() if device == torch.device("mps"): mps.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" # context.services.latents.set(name, resized_latents) context.services.latents.save(name, resized_latents) return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed) @invocation( "lscale", title="Scale Latents", tags=["latents", "resize"], category="latents", version="1.0.0", ) class ScaleLatentsInvocation(BaseInvocation): """Scales latents by a given factor.""" latents: LatentsField = InputField( description=FieldDescriptions.latents, input=Input.Connection, ) scale_factor: float = InputField(gt=0, description=FieldDescriptions.scale_factor) mode: LATENTS_INTERPOLATION_MODE = InputField(default="bilinear", description=FieldDescriptions.interp_mode) antialias: bool = InputField(default=False, description=FieldDescriptions.torch_antialias) def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) # TODO: device = choose_torch_device() # resizing resized_latents = torch.nn.functional.interpolate( latents.to(device), scale_factor=self.scale_factor, mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 resized_latents = resized_latents.to("cpu") torch.cuda.empty_cache() if device == torch.device("mps"): mps.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" # context.services.latents.set(name, resized_latents) context.services.latents.save(name, resized_latents) return build_latents_output(latents_name=name, latents=resized_latents, seed=self.latents.seed) @invocation( "i2l", title="Image to Latents", tags=["latents", "image", "vae", "i2l"], category="latents", version="1.0.0", ) class ImageToLatentsInvocation(BaseInvocation): """Encodes an image into latents.""" image: ImageField = InputField( description="The image to encode", ) vae: VaeField = InputField( description=FieldDescriptions.vae, input=Input.Connection, ) tiled: bool = InputField(default=False, description=FieldDescriptions.tiled) fp32: bool = InputField(default=DEFAULT_PRECISION == "float32", description=FieldDescriptions.fp32) @staticmethod def vae_encode(vae_info, upcast, tiled, image_tensor): with vae_info as vae: orig_dtype = vae.dtype if upcast: vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, LoRAXFormersAttnProcessor, LoRAAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: vae.post_quant_conv.to(orig_dtype) vae.decoder.conv_in.to(orig_dtype) vae.decoder.mid_block.to(orig_dtype) # else: # latents = latents.float() else: vae.to(dtype=torch.float16) # latents = latents.half() if tiled: vae.enable_tiling() else: vae.disable_tiling() # non_noised_latents_from_image image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype) with torch.inference_mode(): latents = ImageToLatentsInvocation._encode_to_tensor(vae, image_tensor) latents = vae.config.scaling_factor * latents latents = latents.to(dtype=orig_dtype) return latents @torch.no_grad() def invoke(self, context: InvocationContext) -> LatentsOutput: image = context.services.images.get_pil_image(self.image.image_name) vae_info = context.services.model_manager.get_model( **self.vae.vae.model_dump(), context=context, ) image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB")) if image_tensor.dim() == 3: image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w") latents = self.vae_encode(vae_info, self.fp32, self.tiled, image_tensor) name = f"{context.graph_execution_state_id}__{self.id}" latents = latents.to("cpu") context.services.latents.save(name, latents) return build_latents_output(latents_name=name, latents=latents, seed=None) @singledispatchmethod @staticmethod def _encode_to_tensor(vae: AutoencoderKL, image_tensor: torch.FloatTensor) -> torch.FloatTensor: image_tensor_dist = vae.encode(image_tensor).latent_dist latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible! return latents @_encode_to_tensor.register @staticmethod def _(vae: AutoencoderTiny, image_tensor: torch.FloatTensor) -> torch.FloatTensor: return vae.encode(image_tensor).latents @invocation( "lblend", title="Blend Latents", tags=["latents", "blend"], category="latents", version="1.0.0", ) class BlendLatentsInvocation(BaseInvocation): """Blend two latents using a given alpha. Latents must have same size.""" latents_a: LatentsField = InputField( description=FieldDescriptions.latents, input=Input.Connection, ) latents_b: LatentsField = InputField( description=FieldDescriptions.latents, input=Input.Connection, ) alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha) def invoke(self, context: InvocationContext) -> LatentsOutput: latents_a = context.services.latents.get(self.latents_a.latents_name) latents_b = context.services.latents.get(self.latents_b.latents_name) if latents_a.shape != latents_b.shape: raise Exception("Latents to blend must be the same size.") # TODO: device = choose_torch_device() def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): """ Spherical linear interpolation Args: t (float/np.ndarray): Float value between 0.0 and 1.0 v0 (np.ndarray): Starting vector v1 (np.ndarray): Final vector DOT_THRESHOLD (float): Threshold for considering the two vectors as colineal. Not recommended to alter this. Returns: v2 (np.ndarray): Interpolation vector between v0 and v1 """ inputs_are_torch = False if not isinstance(v0, np.ndarray): inputs_are_torch = True v0 = v0.detach().cpu().numpy() if not isinstance(v1, np.ndarray): inputs_are_torch = True v1 = v1.detach().cpu().numpy() dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) if np.abs(dot) > DOT_THRESHOLD: v2 = (1 - t) * v0 + t * v1 else: theta_0 = np.arccos(dot) sin_theta_0 = np.sin(theta_0) theta_t = theta_0 * t sin_theta_t = np.sin(theta_t) s0 = np.sin(theta_0 - theta_t) / sin_theta_0 s1 = sin_theta_t / sin_theta_0 v2 = s0 * v0 + s1 * v1 if inputs_are_torch: v2 = torch.from_numpy(v2).to(device) return v2 # blend blended_latents = slerp(self.alpha, latents_a, latents_b) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 blended_latents = blended_latents.to("cpu") torch.cuda.empty_cache() if device == torch.device("mps"): mps.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" # context.services.latents.set(name, resized_latents) context.services.latents.save(name, blended_latents) return build_latents_output(latents_name=name, latents=blended_latents) # The Crop Latents node was copied from @skunkworxdark's implementation here: # https://github.com/skunkworxdark/XYGrid_nodes/blob/74647fa9c1fa57d317a94bd43ca689af7f0aae5e/images_to_grids.py#L1117C1-L1167C80 @invocation( "crop_latents", title="Crop Latents", tags=["latents", "crop"], category="latents", version="1.0.0", ) # TODO(ryand): Named `CropLatentsCoreInvocation` to prevent a conflict with custom node `CropLatentsInvocation`. # Currently, if the class names conflict then 'GET /openapi.json' fails. class CropLatentsCoreInvocation(BaseInvocation): """Crops a latent-space tensor to a box specified in image-space. The box dimensions and coordinates must be divisible by the latent scale factor of 8. """ latents: LatentsField = InputField( description=FieldDescriptions.latents, input=Input.Connection, ) x: int = InputField( ge=0, multiple_of=LATENT_SCALE_FACTOR, description="The left x coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.", ) y: int = InputField( ge=0, multiple_of=LATENT_SCALE_FACTOR, description="The top y coordinate (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.", ) width: int = InputField( ge=1, multiple_of=LATENT_SCALE_FACTOR, description="The width (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.", ) height: int = InputField( ge=1, multiple_of=LATENT_SCALE_FACTOR, description="The height (in px) of the crop rectangle in image space. This value will be converted to a dimension in latent space.", ) def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) x1 = self.x // LATENT_SCALE_FACTOR y1 = self.y // LATENT_SCALE_FACTOR x2 = x1 + (self.width // LATENT_SCALE_FACTOR) y2 = y1 + (self.height // LATENT_SCALE_FACTOR) cropped_latents = latents[..., y1:y2, x1:x2] name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.save(name, cropped_latents) return build_latents_output(latents_name=name, latents=cropped_latents) @invocation_output("ideal_size_output") class IdealSizeOutput(BaseInvocationOutput): """Base class for invocations that output an image""" width: int = OutputField(description="The ideal width of the image (in pixels)") height: int = OutputField(description="The ideal height of the image (in pixels)") @invocation( "ideal_size", title="Ideal Size", tags=["latents", "math", "ideal_size"], version="1.0.2", ) class IdealSizeInvocation(BaseInvocation): """Calculates the ideal size for generation to avoid duplication""" width: int = InputField(default=1024, description="Final image width") height: int = InputField(default=576, description="Final image height") unet: UNetField = InputField(default=None, description=FieldDescriptions.unet) multiplier: float = InputField( default=1.0, description="Amount to multiply the model's dimensions by when calculating the ideal size (may result in initial generation artifacts if too large)", ) def trim_to_multiple_of(self, *args, multiple_of=LATENT_SCALE_FACTOR): return tuple((x - x % multiple_of) for x in args) def invoke(self, context: InvocationContext) -> IdealSizeOutput: aspect = self.width / self.height dimension = 512 if self.unet.unet.base_model == BaseModelType.StableDiffusion2: dimension = 768 elif self.unet.unet.base_model == BaseModelType.StableDiffusionXL: dimension = 1024 dimension = dimension * self.multiplier min_dimension = math.floor(dimension * 0.5) model_area = dimension * dimension # hardcoded for now since all models are trained on square images if aspect > 1.0: init_height = max(min_dimension, math.sqrt(model_area / aspect)) init_width = init_height * aspect else: init_width = max(min_dimension, math.sqrt(model_area * aspect)) init_height = init_width / aspect scaled_width, scaled_height = self.trim_to_multiple_of( math.floor(init_width), math.floor(init_height), ) return IdealSizeOutput(width=scaled_width, height=scaled_height)