""" Manage a cache of Stable Diffusion model files for fast switching. They are moved between GPU and CPU as necessary. If the cache grows larger than a preset maximum, then the least recently used model will be cleared and (re)loaded from disk when next needed. """ import contextlib import hashlib import gc import time import os import psutil import safetensors import safetensors.torch import torch import transformers import warnings from enum import Enum from pathlib import Path from diffusers import ( AutoencoderKL, UNet2DConditionModel, SchedulerMixin, logging as diffusers_logging, ) from transformers import( CLIPTokenizer, CLIPFeatureExtractor, CLIPTextModel, logging as transformers_logging, ) from huggingface_hub import scan_cache_dir from picklescan.scanner import scan_file_path from typing import Sequence, Union from invokeai.backend.globals import Globals, global_cache_dir from diffusers.pipelines.stable_diffusion.safety_checker import ( StableDiffusionSafetyChecker, ) from ..stable_diffusion import ( StableDiffusionGeneratorPipeline, ) from ..stable_diffusion.offloading import ModelGroup, FullyLoadedModelGroup from ..util import CUDA_DEVICE, ask_user, download_with_resume MAX_MODELS_CACHED = 4 # This is the mapping from the stable diffusion submodel dict key to the class class SDModelType(Enum): diffusion_pipeline=StableDiffusionGeneratorPipeline # whole thing vae=AutoencoderKL # parts text_encoder=CLIPTextModel tokenizer=CLIPTokenizer unet=UNet2DConditionModel scheduler=SchedulerMixin safety_checker=StableDiffusionSafetyChecker feature_extractor=CLIPFeatureExtractor # List the model classes we know how to fetch ModelClass = Union[tuple([x.value for x in SDModelType])] class ModelCache(object): def __init__( self, max_models_cached: int=MAX_MODELS_CACHED, execution_device: torch.device=torch.device('cuda'), precision: torch.dtype=torch.float16, sequential_offload: bool=False, ): self.model_group: ModelGroup=FullyLoadedModelGroup(execution_device) self.models: dict = dict() self.stack: Sequence = list() self.sequential_offload: bool=sequential_offload self.precision: torch.dtype=precision self.max_models_cached: int=max_models_cached self.device: torch.device=execution_device def get_submodel( self, repo_id_or_path: Union[str,Path], submodel: SDModelType=SDModelType.vae, subfolder: Path=None, revision: str=None, )->ModelClass: parent_model = self.get_model( repo_id_or_path=repo_id_or_path, subfolder=subfolder, revision=revision, ) return getattr(parent_model, submodel.name) def get_model( self, repo_id_or_path: Union[str,Path], model_type: SDModelType=SDModelType.diffusion_pipeline, subfolder: Path=None, revision: str=None, )->ModelClass: ''' Load and return a HuggingFace model, with RAM caching. :param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model :param subfolder: name of a subfolder in which the model can be found, e.g. "vae" :param revision: model revision :param model_class: class of model to return ''' key = self._model_key( repo_id_or_path, model_type.value, revision, subfolder ) # internal unique identifier for the model if key in self.models: # cached - move to bottom of stack previous_key = self._current_model_key with contextlib.suppress(ValueError): self.stack.remove(key) self.stack.append(key) if previous_key != key: if hasattr(self.current_model,'to'): print(f'DEBUG: loading {key} into GPU') self.model_group.offload_current() self.model_group.load(self.models[key]) else: # not cached -load self._make_cache_room() self.model_group.offload_current() print(f'DEBUG: loading {key} from disk/net') model = self._load_model_from_storage( repo_id_or_path=repo_id_or_path, model_class=model_type.value, subfolder=subfolder, revision=revision, ) if hasattr(model,'to'): self.model_group.install(model) # register with the model group self.stack.append(key) # add to LRU cache self.models[key]=model # keep copy of model in dict return self.models[key] @staticmethod def _model_key(path,model_class,revision,subfolder)->str: return ':'.join([str(path),model_class.__name__,str(revision or ''),str(subfolder or '')]) def _make_cache_room(self): models_in_ram = len(self.models) while models_in_ram >= self.max_models_cached: if least_recently_used_key := self.stack.pop(0): print(f'DEBUG: maximum cache size reached: cache_size={models_in_ram}; unloading model {least_recently_used_key}') self.model_group.uninstall(self.models[least_recently_used_key]) del self.models[least_recently_used_key] models_in_ram = len(self.models) gc.collect() @property def current_model(self)->ModelClass: ''' Returns current model. ''' return self.models[self._current_model_key] @property def _current_model_key(self)->str: ''' Returns key of currently loaded model. ''' return self.stack[-1] def _load_model_from_storage( self, repo_id_or_path: Union[str,Path], subfolder: Path=None, revision: str=None, model_class: ModelClass=StableDiffusionGeneratorPipeline, )->ModelClass: ''' Load and return a HuggingFace model. :param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model :param subfolder: name of a subfolder in which the model can be found, e.g. "vae" :param revision: model revision :param model_class: class of model to return ''' # silence transformer and diffuser warnings with SilenceWarnings(): model = model_class.from_pretrained( repo_id_or_path, revision=revision, subfolder=subfolder or '.', cache_dir=global_cache_dir('hub'), ) if self.sequential_offload and isinstance(model,StableDiffusionGeneratorPipeline): model.enable_offload_submodels(self.device) elif hasattr(model,'to'): model.to(self.device) return model class SilenceWarnings(object): def __init__(self): self.transformers_verbosity = transformers_logging.get_verbosity() self.diffusers_verbosity = diffusers_logging.get_verbosity() def __enter__(self): transformers_logging.set_verbosity_error() diffusers_logging.set_verbosity_error() warnings.simplefilter('ignore') def __exit__(self,type,value,traceback): transformers_logging.set_verbosity(self.transformers_verbosity) diffusers_logging.set_verbosity(self.diffusers_verbosity) warnings.simplefilter('default')