# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) from datetime import datetime, timezone from typing import Literal, Union from pydantic import Field from invokeai.app.models.image import ImageField, ImageType from ..services.invocation_services import InvocationServices from .baseinvocation import BaseInvocation, InvocationContext from .image import ImageOutput class UpscaleInvocation(BaseInvocation): """Upscales an image.""" #fmt: off type: Literal["upscale"] = "upscale" # Inputs image: Union[ImageField, None] = Field(description="The input image", default=None) strength: float = Field(default=0.75, gt=0, le=1, description="The strength") level: Literal[2, 4] = Field(default=2, description="The upscale level") #fmt: on def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get( self.image.image_type, self.image.image_name ) results = context.services.restoration.upscale_and_reconstruct( image_list=[[image, 0]], upscale=(self.level, self.strength), strength=0.0, # GFPGAN strength save_original=False, image_callback=None, ) # Results are image and seed, unwrap for now # TODO: can this return multiple results? image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) context.services.images.save(image_type, image_name, results[0][0]) return ImageOutput( image=ImageField(image_type=image_type, image_name=image_name) )