# Copyright (c) 2024 Ryan Dick, Lincoln D. Stein, and the InvokeAI Development Team """These classes implement model patching with LoRAs and Textual Inversions.""" from __future__ import annotations import pickle from contextlib import contextmanager from typing import Any, Dict, Generator, Iterator, List, Optional, Tuple, Union import numpy as np import torch from diffusers import OnnxRuntimeModel, UNet2DConditionModel from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from invokeai.app.shared.models import FreeUConfig from invokeai.backend.lora import LoRAModelRaw from invokeai.backend.model_manager import AnyModel from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel from invokeai.backend.textual_inversion import TextualInversionManager, TextualInversionModelRaw from invokeai.backend.util.devices import TorchDevice """ loras = [ (lora_model1, 0.7), (lora_model2, 0.4), ] with LoRAHelper.apply_lora_unet(unet, loras): # unet with applied loras # unmodified unet """ # TODO: rename smth like ModelPatcher and add TI method? class ModelPatcher: @staticmethod def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]: assert "." not in lora_key if not lora_key.startswith(prefix): raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}") module = model module_key = "" key_parts = lora_key[len(prefix) :].split("_") submodule_name = key_parts.pop(0) while len(key_parts) > 0: try: module = module.get_submodule(submodule_name) module_key += "." + submodule_name submodule_name = key_parts.pop(0) except Exception: submodule_name += "_" + key_parts.pop(0) module = module.get_submodule(submodule_name) module_key = (module_key + "." + submodule_name).lstrip(".") return (module_key, module) @classmethod @contextmanager def apply_lora_unet( cls, unet: UNet2DConditionModel, loras: Iterator[Tuple[LoRAModelRaw, float]], model_state_dict: Optional[Dict[str, torch.Tensor]] = None, ) -> Generator[None, None, None]: with cls.apply_lora( unet, loras=loras, prefix="lora_unet_", model_state_dict=model_state_dict, ): yield @classmethod @contextmanager def apply_lora_text_encoder( cls, text_encoder: CLIPTextModel, loras: Iterator[Tuple[LoRAModelRaw, float]], model_state_dict: Optional[Dict[str, torch.Tensor]] = None, ) -> Generator[None, None, None]: with cls.apply_lora(text_encoder, loras=loras, prefix="lora_te_", model_state_dict=model_state_dict): yield @classmethod @contextmanager def apply_lora( cls, model: AnyModel, loras: Iterator[Tuple[LoRAModelRaw, float]], prefix: str, model_state_dict: Optional[Dict[str, torch.Tensor]] = None, ) -> Generator[None, None, None]: """ Apply one or more LoRAs to a model. :param model: The model to patch. :param loras: An iterator that returns the LoRA to patch in and its patch weight. :param prefix: A string prefix that precedes keys used in the LoRAs weight layers. :model_state_dict: Read-only copy of the model's state dict in CPU, for unpatching purposes. """ original_weights = {} try: with torch.no_grad(): for lora, lora_weight in loras: # assert lora.device.type == "cpu" for layer_key, layer in lora.layers.items(): if not layer_key.startswith(prefix): continue # TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This # should be improved in the following ways: # 1. The key mapping could be more-efficiently pre-computed. This would save time every time a # LoRA model is applied. # 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the # intricacies of Stable Diffusion key resolution. It should just expect the input LoRA # weights to have valid keys. assert isinstance(model, torch.nn.Module) module_key, module = cls._resolve_lora_key(model, layer_key, prefix) # All of the LoRA weight calculations will be done on the same device as the module weight. # (Performance will be best if this is a CUDA device.) device = module.weight.device dtype = module.weight.dtype if module_key not in original_weights: if model_state_dict is not None: # we were provided with the CPU copy of the state dict original_weights[module_key] = model_state_dict[module_key + ".weight"] else: original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True) layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0 # We intentionally move to the target device first, then cast. Experimentally, this was found to # be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the # same thing in a single call to '.to(...)'. layer.to(device=device, non_blocking=TorchDevice.get_non_blocking(device)) layer.to(dtype=torch.float32, non_blocking=TorchDevice.get_non_blocking(device)) # TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA # devices here. Experimentally, it was found to be very slow on CPU. More investigation needed. layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale) layer.to( device=TorchDevice.CPU_DEVICE, non_blocking=TorchDevice.get_non_blocking(TorchDevice.CPU_DEVICE), ) assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??! if module.weight.shape != layer_weight.shape: # TODO: debug on lycoris assert hasattr(layer_weight, "reshape") layer_weight = layer_weight.reshape(module.weight.shape) assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??! module.weight += layer_weight.to(dtype=dtype, non_blocking=TorchDevice.get_non_blocking(device)) yield # wait for context manager exit finally: assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule() with torch.no_grad(): for module_key, weight in original_weights.items(): model.get_submodule(module_key).weight.copy_( weight, non_blocking=TorchDevice.get_non_blocking(weight.device) ) @classmethod @contextmanager def apply_ti( cls, tokenizer: CLIPTokenizer, text_encoder: Union[CLIPTextModel, CLIPTextModelWithProjection], ti_list: List[Tuple[str, TextualInversionModelRaw]], ) -> Iterator[Tuple[CLIPTokenizer, TextualInversionManager]]: init_tokens_count = None new_tokens_added = None # TODO: This is required since Transformers 4.32 see # https://github.com/huggingface/transformers/pull/25088 # More information by NVIDIA: # https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc # This value might need to be changed in the future and take the GPUs model into account as there seem # to be ideal values for different GPUS. This value is temporary! # For references to the current discussion please see https://github.com/invoke-ai/InvokeAI/pull/4817 pad_to_multiple_of = 8 try: # HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a # workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after # exiting this `apply_ti(...)` context manager. # # In a previous implementation, the deep copy was obtained with `ti_tokenizer = copy.deepcopy(tokenizer)`, # but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs). ti_tokenizer = pickle.loads(pickle.dumps(tokenizer)) ti_manager = TextualInversionManager(ti_tokenizer) init_tokens_count = text_encoder.resize_token_embeddings(None, pad_to_multiple_of).num_embeddings def _get_trigger(ti_name: str, index: int) -> str: trigger = ti_name if index > 0: trigger += f"-!pad-{i}" return f"<{trigger}>" def _get_ti_embedding(model_embeddings: torch.nn.Module, ti: TextualInversionModelRaw) -> torch.Tensor: # for SDXL models, select the embedding that matches the text encoder's dimensions if ti.embedding_2 is not None: return ( ti.embedding_2 if ti.embedding_2.shape[1] == model_embeddings.weight.data[0].shape[0] else ti.embedding ) else: return ti.embedding # modify tokenizer new_tokens_added = 0 for ti_name, ti in ti_list: ti_embedding = _get_ti_embedding(text_encoder.get_input_embeddings(), ti) for i in range(ti_embedding.shape[0]): new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i)) # Modify text_encoder. # resize_token_embeddings(...) constructs a new torch.nn.Embedding internally. Initializing the weights of # this embedding is slow and unnecessary, so we wrap this step in skip_torch_weight_init() to save some # time. with skip_torch_weight_init(): text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added, pad_to_multiple_of) model_embeddings = text_encoder.get_input_embeddings() for ti_name, ti in ti_list: assert isinstance(ti, TextualInversionModelRaw) ti_embedding = _get_ti_embedding(text_encoder.get_input_embeddings(), ti) ti_tokens = [] for i in range(ti_embedding.shape[0]): embedding = ti_embedding[i] trigger = _get_trigger(ti_name, i) token_id = ti_tokenizer.convert_tokens_to_ids(trigger) if token_id == ti_tokenizer.unk_token_id: raise RuntimeError(f"Unable to find token id for token '{trigger}'") if model_embeddings.weight.data[token_id].shape != embedding.shape: raise ValueError( f"Cannot load embedding for {trigger}. It was trained on a model with token dimension" f" {embedding.shape[0]}, but the current model has token dimension" f" {model_embeddings.weight.data[token_id].shape[0]}." ) model_embeddings.weight.data[token_id] = embedding.to( device=text_encoder.device, dtype=text_encoder.dtype ) ti_tokens.append(token_id) if len(ti_tokens) > 1: ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:] yield ti_tokenizer, ti_manager finally: if init_tokens_count and new_tokens_added: text_encoder.resize_token_embeddings(init_tokens_count, pad_to_multiple_of) @classmethod @contextmanager def apply_clip_skip( cls, text_encoder: Union[CLIPTextModel, CLIPTextModelWithProjection], clip_skip: int, ) -> None: skipped_layers = [] try: for _i in range(clip_skip): skipped_layers.append(text_encoder.text_model.encoder.layers.pop(-1)) yield finally: while len(skipped_layers) > 0: text_encoder.text_model.encoder.layers.append(skipped_layers.pop()) @classmethod @contextmanager def apply_freeu( cls, unet: UNet2DConditionModel, freeu_config: Optional[FreeUConfig] = None, ) -> None: did_apply_freeu = False try: assert hasattr(unet, "enable_freeu") # mypy doesn't pick up this attribute? if freeu_config is not None: unet.enable_freeu(b1=freeu_config.b1, b2=freeu_config.b2, s1=freeu_config.s1, s2=freeu_config.s2) did_apply_freeu = True yield finally: assert hasattr(unet, "disable_freeu") # mypy doesn't pick up this attribute? if did_apply_freeu: unet.disable_freeu() class ONNXModelPatcher: @classmethod @contextmanager def apply_lora_unet( cls, unet: OnnxRuntimeModel, loras: Iterator[Tuple[LoRAModelRaw, float]], ) -> None: with cls.apply_lora(unet, loras, "lora_unet_"): yield @classmethod @contextmanager def apply_lora_text_encoder( cls, text_encoder: OnnxRuntimeModel, loras: List[Tuple[LoRAModelRaw, float]], ) -> None: with cls.apply_lora(text_encoder, loras, "lora_te_"): yield # based on # https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323 @classmethod @contextmanager def apply_lora( cls, model: IAIOnnxRuntimeModel, loras: List[Tuple[LoRAModelRaw, float]], prefix: str, ) -> None: from invokeai.backend.models.base import IAIOnnxRuntimeModel if not isinstance(model, IAIOnnxRuntimeModel): raise Exception("Only IAIOnnxRuntimeModel models supported") orig_weights = {} try: blended_loras: Dict[str, torch.Tensor] = {} for lora, lora_weight in loras: for layer_key, layer in lora.layers.items(): if not layer_key.startswith(prefix): continue layer.to(dtype=torch.float32) layer_key = layer_key.replace(prefix, "") # TODO: rewrite to pass original tensor weight(required by ia3) layer_weight = layer.get_weight(None).detach().cpu().numpy() * lora_weight if layer_key in blended_loras: blended_loras[layer_key] += layer_weight else: blended_loras[layer_key] = layer_weight node_names = {} for node in model.nodes.values(): node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name for layer_key, lora_weight in blended_loras.items(): conv_key = layer_key + "_Conv" gemm_key = layer_key + "_Gemm" matmul_key = layer_key + "_MatMul" if conv_key in node_names or gemm_key in node_names: if conv_key in node_names: conv_node = model.nodes[node_names[conv_key]] else: conv_node = model.nodes[node_names[gemm_key]] weight_name = [n for n in conv_node.input if ".weight" in n][0] orig_weight = model.tensors[weight_name] if orig_weight.shape[-2:] == (1, 1): if lora_weight.shape[-2:] == (1, 1): new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2)) else: new_weight = orig_weight.squeeze((3, 2)) + lora_weight new_weight = np.expand_dims(new_weight, (2, 3)) else: if orig_weight.shape != lora_weight.shape: new_weight = orig_weight + lora_weight.reshape(orig_weight.shape) else: new_weight = orig_weight + lora_weight orig_weights[weight_name] = orig_weight model.tensors[weight_name] = new_weight.astype(orig_weight.dtype) elif matmul_key in node_names: weight_node = model.nodes[node_names[matmul_key]] matmul_name = [n for n in weight_node.input if "MatMul" in n][0] orig_weight = model.tensors[matmul_name] new_weight = orig_weight + lora_weight.transpose() orig_weights[matmul_name] = orig_weight model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype) else: # warn? err? pass yield finally: # restore original weights for name, orig_weight in orig_weights.items(): model.tensors[name] = orig_weight @classmethod @contextmanager def apply_ti( cls, tokenizer: CLIPTokenizer, text_encoder: IAIOnnxRuntimeModel, ti_list: List[Tuple[str, Any]], ) -> Iterator[Tuple[CLIPTokenizer, TextualInversionManager]]: from invokeai.backend.models.base import IAIOnnxRuntimeModel if not isinstance(text_encoder, IAIOnnxRuntimeModel): raise Exception("Only IAIOnnxRuntimeModel models supported") orig_embeddings = None try: # HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a # workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after # exiting this `apply_ti(...)` context manager. # # In a previous implementation, the deep copy was obtained with `ti_tokenizer = copy.deepcopy(tokenizer)`, # but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs). ti_tokenizer = pickle.loads(pickle.dumps(tokenizer)) ti_manager = TextualInversionManager(ti_tokenizer) def _get_trigger(ti_name: str, index: int) -> str: trigger = ti_name if index > 0: trigger += f"-!pad-{i}" return f"<{trigger}>" # modify text_encoder orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"] # modify tokenizer new_tokens_added = 0 for ti_name, ti in ti_list: if ti.embedding_2 is not None: ti_embedding = ( ti.embedding_2 if ti.embedding_2.shape[1] == orig_embeddings.shape[0] else ti.embedding ) else: ti_embedding = ti.embedding for i in range(ti_embedding.shape[0]): new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i)) embeddings = np.concatenate( (np.copy(orig_embeddings), np.zeros((new_tokens_added, orig_embeddings.shape[1]))), axis=0, ) for ti_name, _ in ti_list: ti_tokens = [] for i in range(ti_embedding.shape[0]): embedding = ti_embedding[i].detach().numpy() trigger = _get_trigger(ti_name, i) token_id = ti_tokenizer.convert_tokens_to_ids(trigger) if token_id == ti_tokenizer.unk_token_id: raise RuntimeError(f"Unable to find token id for token '{trigger}'") if embeddings[token_id].shape != embedding.shape: raise ValueError( f"Cannot load embedding for {trigger}. It was trained on a model with token dimension" f" {embedding.shape[0]}, but the current model has token dimension" f" {embeddings[token_id].shape[0]}." ) embeddings[token_id] = embedding ti_tokens.append(token_id) if len(ti_tokens) > 1: ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:] text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype( orig_embeddings.dtype ) yield ti_tokenizer, ti_manager finally: # restore if orig_embeddings is not None: text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings