"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" import torch from torch import nn, einsum import torch.nn.functional as F from functools import partial from inspect import isfunction from collections import namedtuple from einops import rearrange, repeat, reduce # constants DEFAULT_DIM_HEAD = 64 Intermediates = namedtuple( 'Intermediates', ['pre_softmax_attn', 'post_softmax_attn'] ) LayerIntermediates = namedtuple( 'Intermediates', ['hiddens', 'attn_intermediates'] ) class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.emb = nn.Embedding(max_seq_len, dim) self.init_() def init_(self): nn.init.normal_(self.emb.weight, std=0.02) def forward(self, x): n = torch.arange(x.shape[1], device=x.device) return self.emb(n)[None, :, :] class FixedPositionalEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x, seq_dim=1, offset=0): t = ( torch.arange(x.shape[seq_dim], device=x.device).type_as( self.inv_freq ) + offset ) sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) return emb[None, :, :] # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def always(val): def inner(*args, **kwargs): return val return inner def not_equals(val): def inner(x): return x != val return inner def equals(val): def inner(x): return x == val return inner def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(), dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key( partial(string_begins_with, prefix), d ) kwargs_without_prefix = dict( map( lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items()), ) ) return kwargs_without_prefix, kwargs # classes class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): x, *rest = self.fn(x, **kwargs) return (x * self.value, *rest) class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x, **kwargs): x, *rest = self.fn(x, **kwargs) return (x * self.g, *rest) class ScaleNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.scale = dim**-0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-8): super().__init__() self.scale = dim**-0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class Residual(nn.Module): def forward(self, x, residual): return x + residual class GRUGating(nn.Module): def __init__(self, dim): super().__init__() self.gru = nn.GRUCell(dim, dim) def forward(self, x, residual): gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d'), ) return gated_output.reshape_as(x) # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = ( nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) ) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) # attention. class Attention(nn.Module): def __init__( self, dim, dim_head=DEFAULT_DIM_HEAD, heads=8, causal=False, mask=None, talking_heads=False, sparse_topk=None, use_entmax15=False, num_mem_kv=0, dropout=0.0, on_attn=False, ): super().__init__() if use_entmax15: raise NotImplementedError( 'Check out entmax activation instead of softmax activation!' ) self.scale = dim_head**-0.5 self.heads = heads self.causal = causal self.mask = mask inner_dim = dim_head * heads self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_k = nn.Linear(dim, inner_dim, bias=False) self.to_v = nn.Linear(dim, inner_dim, bias=False) self.dropout = nn.Dropout(dropout) # talking heads self.talking_heads = talking_heads if talking_heads: self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) # explicit topk sparse attention self.sparse_topk = sparse_topk # entmax # self.attn_fn = entmax15 if use_entmax15 else F.softmax self.attn_fn = F.softmax # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = ( nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim) ) def forward( self, x, context=None, mask=None, context_mask=None, rel_pos=None, sinusoidal_emb=None, prev_attn=None, mem=None, ): b, n, _, h, talking_heads, device = ( *x.shape, self.heads, self.talking_heads, x.device, ) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input if exists(mem): k_input = torch.cat((mem, k_input), dim=-2) v_input = torch.cat((mem, v_input), dim=-2) if exists(sinusoidal_emb): # in shortformer, the query would start at a position offset depending on the past cached memory offset = k_input.shape[-2] - q_input.shape[-2] q_input = q_input + sinusoidal_emb(q_input, offset=offset) k_input = k_input + sinusoidal_emb(k_input) q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) q, k, v = map( lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v) ) input_mask = None if any(map(exists, (mask, context_mask))): q_mask = default( mask, lambda: torch.ones((b, n), device=device).bool() ) k_mask = q_mask if not exists(context) else context_mask k_mask = default( k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool(), ) q_mask = rearrange(q_mask, 'b i -> b () i ()') k_mask = rearrange(k_mask, 'b j -> b () () j') input_mask = q_mask * k_mask if self.num_mem_kv > 0: mem_k, mem_v = map( lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v), ) k = torch.cat((mem_k, k), dim=-2) v = torch.cat((mem_v, v), dim=-2) if exists(input_mask): input_mask = F.pad( input_mask, (self.num_mem_kv, 0), value=True ) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale mask_value = max_neg_value(dots) if exists(prev_attn): dots = dots + prev_attn pre_softmax_attn = dots if talking_heads: dots = einsum( 'b h i j, h k -> b k i j', dots, self.pre_softmax_proj ).contiguous() if exists(rel_pos): dots = rel_pos(dots) if exists(input_mask): dots.masked_fill_(~input_mask, mask_value) del input_mask if self.causal: i, j = dots.shape[-2:] r = torch.arange(i, device=device) mask = rearrange(r, 'i -> () () i ()') < rearrange( r, 'j -> () () () j' ) mask = F.pad(mask, (j - i, 0), value=False) dots.masked_fill_(mask, mask_value) del mask if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: top, _ = dots.topk(self.sparse_topk, dim=-1) vk = top[..., -1].unsqueeze(-1).expand_as(dots) mask = dots < vk dots.masked_fill_(mask, mask_value) del mask attn = self.attn_fn(dots, dim=-1) post_softmax_attn = attn attn = self.dropout(attn) if talking_heads: attn = einsum( 'b h i j, h k -> b k i j', attn, self.post_softmax_proj ).contiguous() out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') intermediates = Intermediates( pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn, ) return self.to_out(out), intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads=8, causal=False, cross_attend=False, only_cross=False, use_scalenorm=False, use_rmsnorm=False, use_rezero=False, rel_pos_num_buckets=32, rel_pos_max_distance=128, position_infused_attn=False, custom_layers=None, sandwich_coef=None, par_ratio=None, residual_attn=False, cross_residual_attn=False, macaron=False, pre_norm=True, gate_residual=False, **kwargs, ): super().__init__() ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) self.has_pos_emb = position_infused_attn self.pia_pos_emb = ( FixedPositionalEmbedding(dim) if position_infused_attn else None ) self.rotary_pos_emb = always(None) assert ( rel_pos_num_buckets <= rel_pos_max_distance ), 'number of relative position buckets must be less than the relative position max distance' self.rel_pos = None self.pre_norm = pre_norm self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm norm_class = RMSNorm if use_rmsnorm else norm_class norm_fn = partial(norm_class, dim) norm_fn = nn.Identity if use_rezero else norm_fn branch_fn = Rezero if use_rezero else None if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = ( par_depth * 2 // 3 ) # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert ( len(default_block) <= par_width ), 'default block is too large for par_ratio' par_block = default_block + ('f',) * ( par_width - len(default_block) ) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert ( sandwich_coef > 0 and sandwich_coef <= depth ), 'sandwich coefficient should be less than the depth' layer_types = ( ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef ) else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) for layer_type in self.layer_types: if layer_type == 'a': layer = Attention( dim, heads=heads, causal=causal, **attn_kwargs ) elif layer_type == 'c': layer = Attention(dim, heads=heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if isinstance(layer, Attention) and exists(branch_fn): layer = branch_fn(layer) if gate_residual: residual_fn = GRUGating(dim) else: residual_fn = Residual() self.layers.append(nn.ModuleList([norm_fn(), layer, residual_fn])) def forward( self, x, context=None, mask=None, context_mask=None, mems=None, return_hiddens=False, **kwargs, ): hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers for ind, (layer_type, (norm, block, residual_fn)) in enumerate( zip(self.layer_types, self.layers) ): is_last = ind == (len(self.layers) - 1) if layer_type == 'a': hiddens.append(x) layer_mem = mems.pop(0) residual = x if self.pre_norm: x = norm(x) if layer_type == 'a': out, inter = block( x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos, prev_attn=prev_attn, mem=layer_mem, ) elif layer_type == 'c': out, inter = block( x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn, ) elif layer_type == 'f': out = block(x) x = residual_fn(out, residual) if layer_type in ('a', 'c'): intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if not self.pre_norm and not is_last: x = norm(x) if return_hiddens: intermediates = LayerIntermediates( hiddens=hiddens, attn_intermediates=intermediates ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal=False, **kwargs) class TransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim=None, max_mem_len=0.0, emb_dropout=0.0, num_memory_tokens=None, tie_embedding=False, use_pos_emb=True, ): super().__init__() assert isinstance( attn_layers, AttentionLayers ), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.num_tokens = num_tokens self.token_emb = nn.Embedding(num_tokens, emb_dim) self.pos_emb = ( AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (use_pos_emb and not attn_layers.has_pos_emb) else always(0) ) self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = ( nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() ) self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.init_() self.to_logits = ( nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() ) # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter( torch.randn(num_memory_tokens, dim) ) # let funnel encoder know number of memory tokens, if specified if hasattr(attn_layers, 'num_memory_tokens'): attn_layers.num_memory_tokens = num_memory_tokens def init_(self): nn.init.normal_(self.token_emb.weight, std=0.02) def forward( self, x, return_embeddings=False, mask=None, return_mems=False, return_attn=False, mems=None, embedding_manager=None, **kwargs, ): b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens embedded_x = self.token_emb(x) if embedding_manager: x = embedding_manager(x, embedded_x) else: x = embedded_x x = x + self.pos_emb(x) x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b=b) x = torch.cat((mem, x), dim=1) # auto-handle masking after appending memory tokens if exists(mask): mask = F.pad(mask, (num_mem, 0), value=True) x, intermediates = self.attn_layers( x, mask=mask, mems=mems, return_hiddens=True, **kwargs ) x = self.norm(x) mem, x = x[:, :num_mem], x[:, num_mem:] out = self.to_logits(x) if not return_embeddings else x if return_mems: hiddens = intermediates.hiddens new_mems = ( list( map( lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens), ) ) if exists(mems) else hiddens ) new_mems = list( map( lambda t: t[..., -self.max_mem_len :, :].detach(), new_mems ) ) return out, new_mems if return_attn: attn_maps = list( map( lambda t: t.post_softmax_attn, intermediates.attn_intermediates, ) ) return out, attn_maps return out