import os import json import torch import safetensors.torch from pydantic import Field from typing import Literal, Optional from .base import ( ModelBase, ModelConfigBase, BaseModelType, ModelType, SubModelType, VariantType, DiffusersModel, ) from invokeai.app.services.config import InvokeAIAppConfig ModelVariantType = VariantType # TODO: # TODO: how to name properly class StableDiffusion15Model(DiffusersModel): # TODO: str -> Path? class DiffusersConfig(ModelConfigBase): format: Literal["diffusers"] vae: Optional[str] = Field(None) variant: ModelVariantType class CheckpointConfig(ModelConfigBase): format: Literal["checkpoint"] vae: Optional[str] = Field(None) config: Optional[str] = Field(None) variant: ModelVariantType def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): assert base_model == BaseModelType.StableDiffusion1_5 assert model_type == ModelType.Pipeline super().__init__( model_path=model_path, base_model=BaseModelType.StableDiffusion1_5, model_type=ModelType.Pipeline, ) @staticmethod def _fast_safetensors_reader(path: str): checkpoint = dict() device = torch.device("meta") with open(path, "rb") as f: definition_len = int.from_bytes(f.read(8), 'little') definition_json = f.read(definition_len) definition = json.loads(definition_json) if "__metadata__" in definition and definition["__metadata__"].get("format", "pt") not in {"pt", "torch", "pytorch"}: raise Exception("Supported only pytorch safetensors files") definition.pop("__metadata__", None) for key, info in definition.items(): dtype = { "I8": torch.int8, "I16": torch.int16, "I32": torch.int32, "I64": torch.int64, "F16": torch.float16, "F32": torch.float32, "F64": torch.float64, }[info["dtype"]] checkpoint[key] = torch.empty(info["shape"], dtype=dtype, device=device) return checkpoint @classmethod def read_checkpoint_meta(cls, path: str): if path.endswith(".safetensors"): try: checkpoint = cls._fast_safetensors_reader(path) except: checkpoint = safetensors.torch.load_file(path, device="cpu") # TODO: create issue for support "meta"? else: checkpoint = torch.load(path, map_location=torch.device("meta")) return checkpoint @classmethod def build_config(cls, **kwargs): if "format" not in kwargs: kwargs["format"] = cls.detect_format(kwargs["path"]) if "variant" not in kwargs: if kwargs["format"] == "checkpoint": if "config" in kwargs: ckpt_config = OmegaConf.load(kwargs["config"]) in_channels = ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"] else: checkpoint = cls.read_checkpoint_meta(kwargs["path"]) checkpoint = checkpoint.get('state_dict', checkpoint) in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1] elif kwargs["format"] == "diffusers": unet_config_path = os.path.join(kwargs["path"], "unet", "config.json") if os.path.exists(unet_config_path): with open(unet_config_path, "r") as f: unet_config = json.loads(f.read()) in_channels = unet_config['in_channels'] else: raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)") else: raise NotImplementedError(f"Unknown stable diffusion format: {kwargs['format']}") if in_channels == 9: kwargs["variant"] = ModelVariantType.Inpaint elif in_channels == 5: kwargs["variant"] = ModelVariantType.Depth elif in_channels == 4: kwargs["variant"] = ModelVariantType.Normal else: raise Exception("Unkown stable diffusion model format") return super().build_config(**kwargs) @classmethod def save_to_config(cls) -> bool: return True @classmethod def detect_format(cls, model_path: str): if os.path.isdir(model_path): return "diffusers" else: return "checkpoint" @classmethod def convert_if_required(cls, model_path: str, dst_cache_path: str, config: ModelConfigBase) -> str: if isinstance(config, cls.CheckpointConfig): return _convert_ckpt_and_cache( version=BaseModelType.StableDiffusion1_5, config=config.dict(), in_path=model_path, out_path=dst_cache_path, ) # TODO: args else: return model_path # all same class StableDiffusion2BaseModel(StableDiffusion15Model): def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): # skip StableDiffusion15Model __init__ assert base_model == BaseModelType.StableDiffusion2Base assert model_type == ModelType.Pipeline super(StableDiffusion15Model, self).__init__( model_path=model_path, base_model=BaseModelType.StableDiffusion2Base, model_type=ModelType.Pipeline, ) @classmethod def convert_if_required(cls, model_path: str, dst_cache_path: str, config: ModelConfigBase) -> str: if isinstance(config, cls.CheckpointConfig): return _convert_ckpt_and_cache( version=BaseModelType.StableDiffusion2Base, config=config.dict(), in_path=model_path, out_path=dst_cache_path, ) # TODO: args else: return model_path class StableDiffusion2Model(StableDiffusion15Model): # TODO: str -> Path? # TODO: check that configs overwriten class DiffusersConfig(ModelConfigBase): format: Literal["diffusers"] vae: Optional[str] = Field(None) attention_upscale: bool = Field(True) class CheckpointConfig(ModelConfigBase): format: Literal["checkpoint"] vae: Optional[str] = Field(None) config: Optional[str] = Field(None) attention_upscale: bool = Field(True) def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): # skip StableDiffusion15Model __init__ assert base_model == BaseModelType.StableDiffusion2 assert model_type == ModelType.Pipeline # skip StableDiffusion15Model __init__ super(StableDiffusion15Model, self).__init__( model_path=model_path, base_model=BaseModelType.StableDiffusion2, model_type=ModelType.Pipeline, ) @classmethod def convert_if_required(cls, model_path: str, dst_cache_path: str, config: ModelConfigBase) -> str: if isinstance(config, cls.CheckpointConfig): return _convert_ckpt_and_cache( version=BaseModelType.StableDiffusion2, config=config.dict(), in_path=model_path, out_path=dst_cache_path, ) # TODO: args else: return model_path # TODO: rework DictConfig = dict def _convert_ckpt_and_cache( self, version: BaseModelType, mconfig: dict, # TODO: in_path: str, out_path: str, ) -> str: """ Convert the checkpoint model indicated in mconfig into a diffusers, cache it to disk, and return Path to converted file. If already on disk then just returns Path. """ raise NotImplementedError() app_config = InvokeAIAppConfig.get_config() #if "config" not in mconfig: # if version == BaseModelType.StableDiffusion1_5: #if #mconfig["config"] = app_config.config_dir / "stable-diffusion" / "v1-inference.yaml" weights = app_config.root_dir / mconfig.path config_file = app_config.root_dir / mconfig.config diffusers_path = app_config.converted_ckpts_dir / weights.stem # return cached version if it exists if diffusers_path.exists(): return diffusers_path # TODO: I think that it more correctly to convert with embedded vae # as if user will delete custom vae he will got not embedded but also custom vae #vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig) vae_ckpt_path, vae_model = None, None # to avoid circular import errors from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers with SilenceWarnings(): convert_ckpt_to_diffusers( weights, diffusers_path, extract_ema=True, original_config_file=config_file, vae=vae_model, vae_path=str(app_config.root_dir / vae_ckpt_path) if vae_ckpt_path else None, scan_needed=True, ) return diffusers_path