# Copyright 2023, Lincoln D. Stein and the InvokeAI Team """ Abstract base class and implementation for recursive directory search for models. Example usage: ``` from invokeai.backend.model_manager import ModelSearch, ModelProbe def find_main_models(model: Path) -> bool: info = ModelProbe.probe(model) if info.model_type == 'main' and info.base_type == 'sd-1': return True else: return False search = ModelSearch(on_model_found=report_it) found = search.search('/tmp/models') print(found) # list of matching model paths print(search.stats) # search stats ``` """ import os from abc import ABC, abstractmethod from logging import Logger from pathlib import Path from typing import Callable, Optional, Set, Union from pydantic import BaseModel, Field from invokeai.app.services.config import InvokeAIAppConfig from invokeai.backend.util.logging import InvokeAILogger default_logger: Logger = InvokeAILogger.get_logger() class SearchStats(BaseModel): items_scanned: int = 0 models_found: int = 0 models_filtered: int = 0 class ModelSearchBase(ABC, BaseModel): """ Abstract directory traversal model search class Usage: search = ModelSearchBase( on_search_started = search_started_callback, on_search_completed = search_completed_callback, on_model_found = model_found_callback, ) models_found = search.search('/path/to/directory') """ # fmt: off on_search_started : Optional[Callable[[Path], None]] = Field(default=None, description="Called just before the search starts.") # noqa E221 on_model_found : Optional[Callable[[Path], bool]] = Field(default=None, description="Called when a model is found.") # noqa E221 on_search_completed : Optional[Callable[[Set[Path]], None]] = Field(default=None, description="Called when search is complete.") # noqa E221 stats : SearchStats = Field(default_factory=SearchStats, description="Summary statistics after search") # noqa E221 logger : Logger = Field(default=default_logger, description="Logger instance.") # noqa E221 # fmt: on class Config: arbitrary_types_allowed = True @abstractmethod def search_started(self) -> None: """ Called before the scan starts. Passes the root search directory to the Callable `on_search_started`. """ pass @abstractmethod def model_found(self, model: Path) -> None: """ Called when a model is found during search. :param model: Model to process - could be a directory or checkpoint. Passes the model's Path to the Callable `on_model_found`. This Callable receives the path to the model and returns a boolean to indicate whether the model should be returned in the search results. """ pass @abstractmethod def search_completed(self) -> None: """ Called before the scan starts. Passes the Set of found model Paths to the Callable `on_search_completed`. """ pass @abstractmethod def search(self, directory: Union[Path, str]) -> Set[Path]: """ Recursively search for models in `directory` and return a set of model paths. If provided, the `on_search_started`, `on_model_found` and `on_search_completed` Callables will be invoked during the search. """ pass class ModelSearch(ModelSearchBase): """ Implementation of ModelSearch with callbacks. Usage: search = ModelSearch() search.model_found = lambda path : 'anime' in path.as_posix() found = search.list_models(['/tmp/models1','/tmp/models2']) # returns all models that have 'anime' in the path """ models_found: Set[Path] = Field(default_factory=set) config: InvokeAIAppConfig = InvokeAIAppConfig.get_config() def search_started(self) -> None: self.models_found = set() if self.on_search_started: self.on_search_started(self._directory) def model_found(self, model: Path) -> None: self.stats.models_found += 1 if self.on_model_found is None or self.on_model_found(model): self.stats.models_filtered += 1 self.models_found.add(model) def search_completed(self) -> None: if self.on_search_completed is not None: self.on_search_completed(self.models_found) def search(self, directory: Union[Path, str]) -> Set[Path]: self._directory = Path(directory) if not self._directory.is_absolute(): self._directory = self.config.models_path / self._directory self.stats = SearchStats() # zero out self.search_started() # This will initialize _models_found to empty self._walk_directory(self._directory) self.search_completed() return self.models_found def _walk_directory(self, path: Union[Path, str], max_depth: int = 20) -> None: absolute_path = Path(path) if ( len(absolute_path.parts) - len(self._directory.parts) > max_depth or not absolute_path.exists() or absolute_path.parent in self.models_found ): return entries = os.scandir(absolute_path.as_posix()) entries = [entry for entry in entries if not entry.name.startswith(".")] dirs = [entry for entry in entries if entry.is_dir()] file_names = [entry.name for entry in entries if entry.is_file()] if any( x in file_names for x in [ "config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin", "image_encoder.txt", ] ): try: self.model_found(absolute_path) return except KeyboardInterrupt: raise except Exception as e: self.logger.warning(str(e)) return for n in file_names: if n.endswith((".ckpt", ".bin", ".pth", ".safetensors", ".pt")): try: self.model_found(absolute_path / n) except KeyboardInterrupt: raise except Exception as e: self.logger.warning(str(e)) for d in dirs: self._walk_directory(absolute_path / d)