import base64 import importlib import io import math import multiprocessing as mp import os import re import warnings from collections import abc from inspect import isfunction from pathlib import Path from queue import Queue from threading import Thread import numpy as np import requests import torch from diffusers import logging as diffusers_logging from PIL import Image, ImageDraw, ImageFont from tqdm import tqdm from transformers import logging as transformers_logging import invokeai.backend.util.logging as logger from .devices import torch_dtype def log_txt_as_img(wh, xc, size=10): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new("RGB", wh, color="white") draw = ImageDraw.Draw(txt) font = ImageFont.load_default() nc = int(40 * (wh[0] / 256)) lines = "\n".join(xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)) try: draw.text((0, 0), lines, fill="black", font=font) except UnicodeEncodeError: logger.warning("Cant encode string for logging. Skipping.") txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def mean_flat(tensor): """ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: logger.debug(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") return total_params def instantiate_from_config(config, **kwargs): if "target" not in config: if config == "__is_first_stage__": return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): # create dummy dataset instance # run prefetching if idx_to_fn: res = func(data, worker_id=idx) else: res = func(data) Q.put([idx, res]) Q.put("Done") def parallel_data_prefetch( func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False, ): # if target_data_type not in ["ndarray", "list"]: # raise ValueError( # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray." # ) if isinstance(data, np.ndarray) and target_data_type == "list": raise ValueError("list expected but function got ndarray.") elif isinstance(data, abc.Iterable): if isinstance(data, dict): logger.warning( '"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' ) data = list(data.values()) if target_data_type == "ndarray": data = np.asarray(data) else: data = list(data) else: raise TypeError( f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}." ) if cpu_intensive: Q = mp.Queue(1000) proc = mp.Process else: Q = Queue(1000) proc = Thread # spawn processes if target_data_type == "ndarray": arguments = [[func, Q, part, i, use_worker_id] for i, part in enumerate(np.array_split(data, n_proc))] else: step = int(len(data) / n_proc + 1) if len(data) % n_proc != 0 else int(len(data) / n_proc) arguments = [ [func, Q, part, i, use_worker_id] for i, part in enumerate([data[i : i + step] for i in range(0, len(data), step)]) ] processes = [] for i in range(n_proc): p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) processes += [p] # start processes logger.info("Start prefetching...") import time start = time.time() gather_res = [[] for _ in range(n_proc)] try: for p in processes: p.start() k = 0 while k < n_proc: # get result res = Q.get() if res == "Done": k += 1 else: gather_res[res[0]] = res[1] except Exception as e: logger.error("Exception: ", e) for p in processes: p.terminate() raise e finally: for p in processes: p.join() logger.info(f"Prefetching complete. [{time.time() - start} sec.]") if target_data_type == "ndarray": if not isinstance(gather_res[0], np.ndarray): return np.concatenate([np.asarray(r) for r in gather_res], axis=0) # order outputs return np.concatenate(gather_res, axis=0) elif target_data_type == "list": out = [] for r in gather_res: out.extend(r) return out else: return gather_res def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3): delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = ( torch.stack( torch.meshgrid( torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing="ij", ), dim=-1, ).to(device) % 1 ) rand_val = torch.rand(res[0] + 1, res[1] + 1) angles = 2 * math.pi * rand_val gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1).to(device) tile_grads = ( lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]] .repeat_interleave(d[0], 0) .repeat_interleave(d[1], 1) ) def dot(grad, shift): return ( torch.stack( ( grid[: shape[0], : shape[1], 0] + shift[0], grid[: shape[0], : shape[1], 1] + shift[1], ), dim=-1, ) * grad[: shape[0], : shape[1]] ).sum(dim=-1) n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device) n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]).to(device) n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]).to(device) n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]).to(device) t = fade(grid[: shape[0], : shape[1]]) noise = math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]).to( device ) return noise.to(dtype=torch_dtype(device)) def ask_user(question: str, answers: list): from itertools import chain, repeat user_prompt = f"\n>> {question} {answers}: " invalid_answer_msg = "Invalid answer. Please try again." pose_question = chain([user_prompt], repeat("\n".join([invalid_answer_msg, user_prompt]))) user_answers = map(input, pose_question) valid_response = next(filter(answers.__contains__, user_answers)) return valid_response # ------------------------------------- def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path: """ Download a model file. :param url: https, http or ftp URL :param dest: A Path object. If path exists and is a directory, then we try to derive the filename from the URL's Content-Disposition header and copy the URL contents into dest/filename :param access_token: Access token to access this resource """ header = {"Authorization": f"Bearer {access_token}"} if access_token else {} open_mode = "wb" exist_size = 0 resp = requests.get(url, header, stream=True) content_length = int(resp.headers.get("content-length", 0)) if dest.is_dir(): try: file_name = re.search('filename="(.+)"', resp.headers.get("Content-Disposition")).group(1) except AttributeError: file_name = os.path.basename(url) dest = dest / file_name else: dest.parent.mkdir(parents=True, exist_ok=True) if dest.exists(): exist_size = dest.stat().st_size header["Range"] = f"bytes={exist_size}-" open_mode = "ab" resp = requests.get(url, headers=header, stream=True) # new request with range if exist_size > content_length: logger.warning("corrupt existing file found. re-downloading") os.remove(dest) exist_size = 0 if resp.status_code == 416 or (content_length > 0 and exist_size == content_length): logger.warning(f"{dest}: complete file found. Skipping.") return dest elif resp.status_code == 206 or exist_size > 0: logger.warning(f"{dest}: partial file found. Resuming...") elif resp.status_code != 200: logger.error(f"An error occurred during downloading {dest}: {resp.reason}") else: logger.info(f"{dest}: Downloading...") try: if content_length < 2000: logger.error(f"ERROR DOWNLOADING {url}: {resp.text}") return None with open(dest, open_mode) as file, tqdm( desc=str(dest), initial=exist_size, total=content_length, unit="iB", unit_scale=True, unit_divisor=1000, ) as bar: for data in resp.iter_content(chunk_size=1024): size = file.write(data) bar.update(size) except Exception as e: logger.error(f"An error occurred while downloading {dest}: {str(e)}") return None return dest def url_attachment_name(url: str) -> dict: try: resp = requests.get(url, stream=True) match = re.search('filename="(.+)"', resp.headers.get("Content-Disposition")) return match.group(1) except Exception: return None def download_with_progress_bar(url: str, dest: Path) -> bool: result = download_with_resume(url, dest, access_token=None) return result is not None def image_to_dataURL(image: Image.Image, image_format: str = "PNG") -> str: """ Converts an image into a base64 image dataURL. """ buffered = io.BytesIO() image.save(buffered, format=image_format) mime_type = Image.MIME.get(image_format.upper(), "image/" + image_format.lower()) image_base64 = f"data:{mime_type};base64," + base64.b64encode(buffered.getvalue()).decode("UTF-8") return image_base64 class Chdir(object): """Context manager to chdir to desired directory and change back after context exits: Args: path (Path): The path to the cwd """ def __init__(self, path: Path): self.path = path self.original = Path().absolute() def __enter__(self): os.chdir(self.path) def __exit__(self, *args): os.chdir(self.original) class SilenceWarnings(object): """Context manager to temporarily lower verbosity of diffusers & transformers warning messages.""" def __enter__(self): """Set verbosity to error.""" self.transformers_verbosity = transformers_logging.get_verbosity() self.diffusers_verbosity = diffusers_logging.get_verbosity() transformers_logging.set_verbosity_error() diffusers_logging.set_verbosity_error() warnings.simplefilter("ignore") def __exit__(self, type, value, traceback): """Restore logger verbosity to state before context was entered.""" transformers_logging.set_verbosity(self.transformers_verbosity) diffusers_logging.set_verbosity(self.diffusers_verbosity) warnings.simplefilter("default")