# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Derived from source code carrying the following copyrights # Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich # Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors import gc import importlib import os import random import re import sys import time import traceback from typing import List import cv2 import diffusers import numpy as np import skimage import torch import transformers from diffusers.pipeline_utils import DiffusionPipeline from diffusers.utils.import_utils import is_xformers_available from omegaconf import OmegaConf from PIL import Image, ImageOps from pytorch_lightning import logging, seed_everything import ldm.invoke.conditioning from invokeai.models import ModelManager from invokeai.generator import infill_methods from invokeai.models import (DDIMSampler, KSampler, PLMSSampler ) from ldm.invoke.args import metadata_from_png from ldm.invoke.concepts_lib import HuggingFaceConceptsLibrary from ldm.invoke.conditioning import get_uc_and_c_and_ec from ldm.invoke.devices import choose_precision, choose_torch_device from ldm.invoke.globals import Globals, global_cache_dir from ldm.invoke.image_util import InitImageResizer from ldm.invoke.pngwriter import PngWriter from ldm.invoke.seamless import configure_model_padding from ldm.invoke.txt2mask import Txt2Mask def fix_func(orig): if hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): def new_func(*args, **kw): device = kw.get("device", "mps") kw["device"] = "cpu" return orig(*args, **kw).to(device) return new_func return orig torch.rand = fix_func(torch.rand) torch.rand_like = fix_func(torch.rand_like) torch.randn = fix_func(torch.randn) torch.randn_like = fix_func(torch.randn_like) torch.randint = fix_func(torch.randint) torch.randint_like = fix_func(torch.randint_like) torch.bernoulli = fix_func(torch.bernoulli) torch.multinomial = fix_func(torch.multinomial) # this is fallback model in case no default is defined FALLBACK_MODEL_NAME = "stable-diffusion-1.5" """Simplified text to image API for stable diffusion/latent diffusion Example Usage: from ldm.generate import Generate # Create an object with default values gr = Generate('stable-diffusion-1.4') # do the slow model initialization gr.load_model() # Do the fast inference & image generation. Any options passed here # override the default values assigned during class initialization # Will call load_model() if the model was not previously loaded and so # may be slow at first. # The method returns a list of images. Each row of the list is a sub-list of [filename,seed] results = gr.prompt2png(prompt = "an astronaut riding a horse", outdir = "./outputs/samples", iterations = 3) for row in results: print(f'filename={row[0]}') print(f'seed ={row[1]}') # Same thing, but using an initial image. results = gr.prompt2png(prompt = "an astronaut riding a horse", outdir = "./outputs/, iterations = 3, init_img = "./sketches/horse+rider.png") for row in results: print(f'filename={row[0]}') print(f'seed ={row[1]}') # Same thing, but we return a series of Image objects, which lets you manipulate them, # combine them, and save them under arbitrary names results = gr.prompt2image(prompt = "an astronaut riding a horse" outdir = "./outputs/") for row in results: im = row[0] seed = row[1] im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png') im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg') Note that the old txt2img() and img2img() calls are deprecated but will still work. The full list of arguments to Generate() are: gr = Generate( # these values are set once and shouldn't be changed conf:str = path to configuration file ('configs/models.yaml') model:str = symbolic name of the model in the configuration file precision:float = float precision to be used safety_checker:bool = activate safety checker [False] # this value is sticky and maintained between generation calls sampler_name:str = ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_dpmpp_2', 'k_dpmpp_2_a', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms # these are deprecated - use conf and model instead weights = path to model weights ('models/ldm/stable-diffusion-v1/model.ckpt') config = path to model configuration ('configs/stable-diffusion/v1-inference.yaml') ) """ class Generate: """Generate class Stores default values for multiple configuration items """ def __init__( self, model=None, conf="configs/models.yaml", embedding_path=None, sampler_name="k_lms", ddim_eta=0.0, # deterministic full_precision=False, precision="auto", outdir="outputs/img-samples", gfpgan=None, codeformer=None, esrgan=None, free_gpu_mem: bool = False, safety_checker: bool = False, max_loaded_models: int = 2, # these are deprecated; if present they override values in the conf file weights=None, config=None, ): mconfig = OmegaConf.load(conf) self.height = None self.width = None self.model_manager = None self.iterations = 1 self.steps = 50 self.cfg_scale = 7.5 self.sampler_name = sampler_name self.ddim_eta = ddim_eta # same seed always produces same image self.precision = precision self.strength = 0.75 self.seamless = False self.seamless_axes = {"x", "y"} self.hires_fix = False self.embedding_path = embedding_path self.model = None # empty for now self.model_hash = None self.sampler = None self.device = None self.max_memory_allocated = 0 self.memory_allocated = 0 self.session_peakmem = 0 self.base_generator = None self.seed = None self.outdir = outdir self.gfpgan = gfpgan self.codeformer = codeformer self.esrgan = esrgan self.free_gpu_mem = free_gpu_mem self.max_loaded_models = (max_loaded_models,) self.size_matters = True # used to warn once about large image sizes and VRAM self.txt2mask = None self.safety_checker = None self.karras_max = None self.infill_method = None # Note that in previous versions, there was an option to pass the # device to Generate(). However the device was then ignored, so # it wasn't actually doing anything. This logic could be reinstated. self.device = torch.device(choose_torch_device()) print(f">> Using device_type {self.device.type}") if full_precision: if self.precision != "auto": raise ValueError("Remove --full_precision / -F if using --precision") print("Please remove deprecated --full_precision / -F") print("If auto config does not work you can use --precision=float32") self.precision = "float32" if self.precision == "auto": self.precision = choose_precision(self.device) Globals.full_precision = self.precision == "float32" if is_xformers_available(): if torch.cuda.is_available() and not Globals.disable_xformers: print(">> xformers memory-efficient attention is available and enabled") else: print( ">> xformers memory-efficient attention is available but disabled" ) else: print(">> xformers not installed") # model caching system for fast switching self.model_manager = ModelManager( mconfig, self.device, self.precision, max_loaded_models=max_loaded_models, sequential_offload=self.free_gpu_mem, ) # don't accept invalid models fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME model = model or fallback if not self.model_manager.valid_model(model): print( f'** "{model}" is not a known model name; falling back to {fallback}.' ) model = None self.model_name = model or fallback # for VRAM usage statistics self.session_peakmem = ( torch.cuda.max_memory_allocated(self.device) if self._has_cuda else None ) transformers.logging.set_verbosity_error() # gets rid of annoying messages about random seed logging.getLogger("pytorch_lightning").setLevel(logging.ERROR) # load safety checker if requested if safety_checker: try: print(">> Initializing NSFW checker") from diffusers.pipelines.stable_diffusion.safety_checker import ( StableDiffusionSafetyChecker, ) from transformers import AutoFeatureExtractor safety_model_id = "CompVis/stable-diffusion-safety-checker" safety_model_path = global_cache_dir("hub") self.safety_checker = StableDiffusionSafetyChecker.from_pretrained( safety_model_id, local_files_only=True, cache_dir=safety_model_path, ) self.safety_feature_extractor = AutoFeatureExtractor.from_pretrained( safety_model_id, local_files_only=True, cache_dir=safety_model_path, ) self.safety_checker.to(self.device) except Exception: print( "** An error was encountered while installing the safety checker:" ) print(traceback.format_exc()) else: print(">> NSFW checker is disabled") def prompt2png(self, prompt, outdir, **kwargs): """ Takes a prompt and an output directory, writes out the requested number of PNG files, and returns an array of [[filename,seed],[filename,seed]...] Optional named arguments are the same as those passed to Generate and prompt2image() """ results = self.prompt2image(prompt, **kwargs) pngwriter = PngWriter(outdir) prefix = pngwriter.unique_prefix() outputs = [] for image, seed in results: name = f"{prefix}.{seed}.png" path = pngwriter.save_image_and_prompt_to_png( image, dream_prompt=f"{prompt} -S{seed}", name=name ) outputs.append([path, seed]) return outputs def txt2img(self, prompt, **kwargs): outdir = kwargs.pop("outdir", self.outdir) return self.prompt2png(prompt, outdir, **kwargs) def img2img(self, prompt, **kwargs): outdir = kwargs.pop("outdir", self.outdir) assert ( "init_img" in kwargs ), "call to img2img() must include the init_img argument" return self.prompt2png(prompt, outdir, **kwargs) def prompt2image( self, # these are common prompt, iterations=None, steps=None, seed=None, cfg_scale=None, ddim_eta=None, skip_normalize=False, image_callback=None, step_callback=None, width=None, height=None, sampler_name=None, seamless=False, seamless_axes={"x", "y"}, log_tokenization=False, with_variations=None, variation_amount=0.0, threshold=0.0, perlin=0.0, h_symmetry_time_pct = None, v_symmetry_time_pct = None, karras_max=None, outdir=None, # these are specific to img2img and inpaint init_img=None, init_mask=None, text_mask=None, invert_mask=False, fit=False, strength=None, init_color=None, # these are specific to embiggen (which also relies on img2img args) embiggen=None, embiggen_tiles=None, embiggen_strength=None, # these are specific to GFPGAN/ESRGAN gfpgan_strength=0, facetool=None, facetool_strength=0, codeformer_fidelity=None, save_original=False, upscale=None, upscale_denoise_str=0.75, # this is specific to inpainting and causes more extreme inpainting inpaint_replace=0.0, # This controls the size at which inpaint occurs (scaled up for inpaint, then back down for the result) inpaint_width=None, inpaint_height=None, # This will help match inpainted areas to the original image more smoothly mask_blur_radius: int = 8, # Set this True to handle KeyboardInterrupt internally catch_interrupts=False, hires_fix=False, use_mps_noise=False, # Seam settings for outpainting seam_size: int = 0, seam_blur: int = 0, seam_strength: float = 0.7, seam_steps: int = 10, tile_size: int = 32, infill_method=None, force_outpaint: bool = False, enable_image_debugging=False, **args, ): # eat up additional cruft self.clear_cuda_stats() """ ldm.generate.prompt2image() is the common entry point for txt2img() and img2img() It takes the following arguments: prompt // prompt string (no default) iterations // iterations (1); image count=iterations steps // refinement steps per iteration seed // seed for random number generator width // width of image, in multiples of 64 (512) height // height of image, in multiples of 64 (512) cfg_scale // how strongly the prompt influences the image (7.5) (must be >1) seamless // whether the generated image should tile hires_fix // whether the Hires Fix should be applied during generation init_img // path to an initial image init_mask // path to a mask for the initial image text_mask // a text string that will be used to guide clipseg generation of the init_mask invert_mask // boolean, if true invert the mask strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely facetool_strength // strength for GFPGAN/CodeFormer. 0.0 preserves image exactly, 1.0 replaces it completely ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image) step_callback // a function or method that will be called each step image_callback // a function or method that will be called each time an image is generated with_variations // a weighted list [(seed_1, weight_1), (seed_2, weight_2), ...] of variations which should be applied before doing any generation variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image) threshold // optional value >=0 to add thresholding to latent values for k-diffusion samplers (0 disables) perlin // optional 0-1 value to add a percentage of perlin noise to the initial noise h_symmetry_time_pct // optional 0-1 value that indicates the time at which horizontal symmetry is applied v_symmetry_time_pct // optional 0-1 value that indicates the time at which vertical symmetry is applied embiggen // scale factor relative to the size of the --init_img (-I), followed by ESRGAN upscaling strength (0-1.0), followed by minimum amount of overlap between tiles as a decimal ratio (0 - 1.0) or number of pixels embiggen_tiles // list of tiles by number in order to process and replace onto the image e.g. `0 2 4` embiggen_strength // strength for embiggen. 0.0 preserves image exactly, 1.0 replaces it completely To use the step callback, define a function that receives two arguments: - Image GPU data - The step number To use the image callback, define a function of method that receives two arguments, an Image object and the seed. You can then do whatever you like with the image, including converting it to different formats and manipulating it. For example: def process_image(image,seed): image.save(f{'images/seed.png'}) The code used to save images to a directory can be found in ldm/invoke/pngwriter.py. It contains code to create the requested output directory, select a unique informative name for each image, and write the prompt into the PNG metadata. """ # TODO: convert this into a getattr() loop steps = steps or self.steps width = width or self.width height = height or self.height seamless = seamless or self.seamless seamless_axes = seamless_axes or self.seamless_axes hires_fix = hires_fix or self.hires_fix cfg_scale = cfg_scale or self.cfg_scale ddim_eta = ddim_eta or self.ddim_eta iterations = iterations or self.iterations strength = strength or self.strength outdir = outdir or self.outdir self.seed = seed self.log_tokenization = log_tokenization self.step_callback = step_callback self.karras_max = karras_max self.infill_method = ( infill_method or infill_methods()[0], ) # The infill method to use with_variations = [] if with_variations is None else with_variations # will instantiate the model or return it from cache model = self.set_model(self.model_name) # self.width and self.height are set by set_model() # to the width and height of the image training set width = width or self.width height = height or self.height if isinstance(model, DiffusionPipeline): configure_model_padding(model.unet, seamless, seamless_axes) configure_model_padding(model.vae, seamless, seamless_axes) else: configure_model_padding(model, seamless, seamless_axes) assert cfg_scale > 1.0, "CFG_Scale (-C) must be >1.0" assert threshold >= 0.0, "--threshold must be >=0.0" assert ( 0.0 < strength <= 1.0 ), "img2img and inpaint strength can only work with 0.0 < strength < 1.0" assert ( 0.0 <= variation_amount <= 1.0 ), "-v --variation_amount must be in [0.0, 1.0]" assert 0.0 <= perlin <= 1.0, "--perlin must be in [0.0, 1.0]" assert (embiggen == None and embiggen_tiles == None) or ( (embiggen != None or embiggen_tiles != None) and init_img != None ), "Embiggen requires an init/input image to be specified" if len(with_variations) > 0 or variation_amount > 1.0: assert seed is not None, "seed must be specified when using with_variations" if variation_amount == 0.0: assert ( iterations == 1 ), "when using --with_variations, multiple iterations are only possible when using --variation_amount" assert all( 0 <= weight <= 1 for _, weight in with_variations ), f"variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}" width, height, _ = self._resolution_check(width, height, log=True) assert ( inpaint_replace >= 0.0 and inpaint_replace <= 1.0 ), "inpaint_replace must be between 0.0 and 1.0" if sampler_name and (sampler_name != self.sampler_name): self.sampler_name = sampler_name self._set_sampler() # apply the concepts library to the prompt prompt = self.huggingface_concepts_library.replace_concepts_with_triggers( prompt, lambda concepts: self.load_huggingface_concepts(concepts), self.model.textual_inversion_manager.get_all_trigger_strings(), ) # bit of a hack to change the cached sampler's karras threshold to # whatever the user asked for if karras_max is not None and isinstance(self.sampler, KSampler): self.sampler.adjust_settings(karras_max=karras_max) tic = time.time() if self._has_cuda(): torch.cuda.reset_peak_memory_stats() results = list() init_image = None mask_image = None try: if ( self.free_gpu_mem and self.model.cond_stage_model.device != self.model.device ): self.model.cond_stage_model.device = self.model.device self.model.cond_stage_model.to(self.model.device) except AttributeError: pass try: uc, c, extra_conditioning_info = get_uc_and_c_and_ec( prompt, model=self.model, skip_normalize_legacy_blend=skip_normalize, log_tokens=self.log_tokenization, ) init_image, mask_image = self._make_images( init_img, init_mask, width, height, fit=fit, text_mask=text_mask, invert_mask=invert_mask, force_outpaint=force_outpaint, ) # TODO: Hacky selection of operation to perform. Needs to be refactored. generator = self.select_generator( init_image, mask_image, embiggen, hires_fix, force_outpaint ) generator.set_variation(self.seed, variation_amount, with_variations) generator.use_mps_noise = use_mps_noise checker = ( { "checker": self.safety_checker, "extractor": self.safety_feature_extractor, } if self.safety_checker else None ) results = generator.generate( prompt, iterations=iterations, seed=self.seed, sampler=self.sampler, steps=steps, cfg_scale=cfg_scale, conditioning=(uc, c, extra_conditioning_info), ddim_eta=ddim_eta, image_callback=image_callback, # called after the final image is generated step_callback=step_callback, # called after each intermediate image is generated width=width, height=height, init_img=init_img, # embiggen needs to manipulate from the unmodified init_img init_image=init_image, # notice that init_image is different from init_img mask_image=mask_image, strength=strength, threshold=threshold, perlin=perlin, h_symmetry_time_pct=h_symmetry_time_pct, v_symmetry_time_pct=v_symmetry_time_pct, embiggen=embiggen, embiggen_tiles=embiggen_tiles, embiggen_strength=embiggen_strength, inpaint_replace=inpaint_replace, mask_blur_radius=mask_blur_radius, safety_checker=checker, seam_size=seam_size, seam_blur=seam_blur, seam_strength=seam_strength, seam_steps=seam_steps, tile_size=tile_size, infill_method=infill_method, force_outpaint=force_outpaint, inpaint_height=inpaint_height, inpaint_width=inpaint_width, enable_image_debugging=enable_image_debugging, free_gpu_mem=self.free_gpu_mem, clear_cuda_cache=self.clear_cuda_cache, ) if init_color: self.correct_colors( image_list=results, reference_image_path=init_color, image_callback=image_callback, ) if upscale is not None or facetool_strength > 0: self.upscale_and_reconstruct( results, upscale=upscale, upscale_denoise_str=upscale_denoise_str, facetool=facetool, strength=facetool_strength, codeformer_fidelity=codeformer_fidelity, save_original=save_original, image_callback=image_callback, ) except KeyboardInterrupt: # Clear the CUDA cache on an exception self.clear_cuda_cache() if catch_interrupts: print("**Interrupted** Partial results will be returned.") else: raise KeyboardInterrupt except RuntimeError: # Clear the CUDA cache on an exception self.clear_cuda_cache() print(traceback.format_exc(), file=sys.stderr) print(">> Could not generate image.") toc = time.time() print("\n>> Usage stats:") print(f">> {len(results)} image(s) generated in", "%4.2fs" % (toc - tic)) self.print_cuda_stats() return results def gather_cuda_stats(self): if self._has_cuda(): self.max_memory_allocated = max( self.max_memory_allocated, torch.cuda.max_memory_allocated(self.device) ) self.memory_allocated = max( self.memory_allocated, torch.cuda.memory_allocated(self.device) ) self.session_peakmem = max( self.session_peakmem, torch.cuda.max_memory_allocated(self.device) ) def clear_cuda_cache(self): if self._has_cuda(): self.gather_cuda_stats() # Run garbage collection prior to emptying the CUDA cache gc.collect() torch.cuda.empty_cache() def clear_cuda_stats(self): self.max_memory_allocated = 0 self.memory_allocated = 0 def print_cuda_stats(self): if self._has_cuda(): self.gather_cuda_stats() print( ">> Max VRAM used for this generation:", "%4.2fG." % (self.max_memory_allocated / 1e9), "Current VRAM utilization:", "%4.2fG" % (self.memory_allocated / 1e9), ) print( ">> Max VRAM used since script start: ", "%4.2fG" % (self.session_peakmem / 1e9), ) # this needs to be generalized to all sorts of postprocessors, which should be wrapped # in a nice harmonized call signature. For now we have a bunch of if/elses! def apply_postprocessor( self, image_path, tool="gfpgan", # one of 'upscale', 'gfpgan', 'codeformer', 'outpaint', or 'embiggen' facetool_strength=0.0, codeformer_fidelity=0.75, upscale=None, upscale_denoise_str=0.75, out_direction=None, outcrop=[], save_original=True, # to get new name callback=None, opt=None, ): # retrieve the seed from the image; seed = None prompt = None args = metadata_from_png(image_path) seed = opt.seed or args.seed if seed is None or seed < 0: seed = random.randrange(0, np.iinfo(np.uint32).max) prompt = opt.prompt or args.prompt or "" print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}') # try to reuse the same filename prefix as the original file. # we take everything up to the first period prefix = None m = re.match(r"^([^.]+)\.", os.path.basename(image_path)) if m: prefix = m.groups()[0] # face fixers and esrgan take an Image, but embiggen takes a path image = Image.open(image_path) # used by multiple postfixers # todo: cross-attention control uc, c, extra_conditioning_info = get_uc_and_c_and_ec( prompt, model=self.model, skip_normalize_legacy_blend=opt.skip_normalize, log_tokens=ldm.invoke.conditioning.log_tokenization, ) if tool in ("gfpgan", "codeformer", "upscale"): if tool == "gfpgan": facetool = "gfpgan" elif tool == "codeformer": facetool = "codeformer" elif tool == "upscale": facetool = "gfpgan" # but won't be run facetool_strength = 0 return self.upscale_and_reconstruct( [[image, seed]], facetool=facetool, strength=facetool_strength, codeformer_fidelity=codeformer_fidelity, save_original=save_original, upscale=upscale, upscale_denoise_str=upscale_denoise_str, image_callback=callback, prefix=prefix, ) elif tool == "outcrop": from ldm.invoke.restoration.outcrop import Outcrop extend_instructions = {} for direction, pixels in _pairwise(opt.outcrop): try: extend_instructions[direction] = int(pixels) except ValueError: print( '** invalid extension instruction. Use ..., as in "top 64 left 128 right 64 bottom 64"' ) opt.seed = seed opt.prompt = prompt if len(extend_instructions) > 0: restorer = Outcrop( image, self, ) return restorer.process( extend_instructions, opt=opt, orig_opt=args, image_callback=callback, prefix=prefix, ) elif tool == "embiggen": # fetch the metadata from the image generator = self.select_generator(embiggen=True) opt.strength = opt.embiggen_strength or 0.40 print( f">> Setting img2img strength to {opt.strength} for happy embiggening" ) generator.generate( prompt, sampler=self.sampler, steps=opt.steps, cfg_scale=opt.cfg_scale, ddim_eta=self.ddim_eta, conditioning=(uc, c, extra_conditioning_info), init_img=image_path, # not the Image! (sigh) init_image=image, # embiggen wants both! (sigh) strength=opt.strength, width=opt.width, height=opt.height, embiggen=opt.embiggen, embiggen_tiles=opt.embiggen_tiles, embiggen_strength=opt.embiggen_strength, image_callback=callback, clear_cuda_cache=self.clear_cuda_cache, ) elif tool == "outpaint": from ldm.invoke.restoration.outpaint import Outpaint restorer = Outpaint(image, self) return restorer.process(opt, args, image_callback=callback, prefix=prefix) elif tool is None: print( "* please provide at least one postprocessing option, such as -G or -U" ) return None else: print(f"* postprocessing tool {tool} is not yet supported") return None def select_generator( self, init_image: Image.Image = None, mask_image: Image.Image = None, embiggen: bool = False, hires_fix: bool = False, force_outpaint: bool = False, ): if hires_fix: return self._make_txt2img2img() if embiggen is not None: return self._make_embiggen() if ((init_image is not None) and (mask_image is not None)) or force_outpaint: return self._make_inpaint() if init_image is not None: return self._make_img2img() return self._make_txt2img() def _make_images( self, img, mask, width, height, fit=False, text_mask=None, invert_mask=False, force_outpaint=False, ): init_image = None init_mask = None if not img: return None, None image = self._load_img(img) if image.width < self.width and image.height < self.height: print( f">> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions" ) # if image has a transparent area and no mask was provided, then try to generate mask if self._has_transparency(image): self._transparency_check_and_warning(image, mask, force_outpaint) init_mask = self._create_init_mask(image, width, height, fit=fit) if (image.width * image.height) > ( self.width * self.height ) and self.size_matters: print( ">> This input is larger than your defaults. If you run out of memory, please use a smaller image." ) self.size_matters = False init_image = self._create_init_image(image, width, height, fit=fit) if mask: mask_image = self._load_img(mask) init_mask = self._create_init_mask(mask_image, width, height, fit=fit) elif text_mask: init_mask = self._txt2mask(image, text_mask, width, height, fit=fit) if init_mask and invert_mask: init_mask = ImageOps.invert(init_mask) return init_image, init_mask def _make_base(self): return self._load_generator("", "Generator") def _make_txt2img(self): return self._load_generator(".txt2img", "Txt2Img") def _make_img2img(self): return self._load_generator(".img2img", "Img2Img") def _make_embiggen(self): return self._load_generator(".embiggen", "Embiggen") def _make_txt2img2img(self): return self._load_generator(".txt2img2img", "Txt2Img2Img") def _make_inpaint(self): return self._load_generator(".inpaint", "Inpaint") def _load_generator(self, module, class_name): mn = f"invokeai.generator{module}" cn = class_name module = importlib.import_module(mn) constructor = getattr(module, cn) return constructor(self.model, self.precision) def load_model(self): """ preload model identified in self.model_name """ return self.set_model(self.model_name) def set_model(self, model_name): """ Given the name of a model defined in models.yaml, will load and initialize it and return the model object. Previously-used models will be cached. If the passed model_name is invalid, raises a KeyError. If the model fails to load for some reason, will attempt to load the previously- loaded model (if any). If that fallback fails, will raise an AssertionError """ if self.model_name == model_name and self.model is not None: return self.model previous_model_name = self.model_name # the model cache does the loading and offloading cache = self.model_manager if not cache.valid_model(model_name): raise KeyError( f'** "{model_name}" is not a known model name. Cannot change.' ) cache.print_vram_usage() # have to get rid of all references to model in order # to free it from GPU memory self.model = None self.sampler = None self.generators = {} gc.collect() try: model_data = cache.get_model(model_name) except Exception as e: print(f"** model {model_name} could not be loaded: {str(e)}") print(traceback.format_exc(), file=sys.stderr) if previous_model_name is None: raise e print("** trying to reload previous model") model_data = cache.get_model(previous_model_name) # load previous if model_data is None: raise e model_name = previous_model_name self.model = model_data["model"] self.width = model_data["width"] self.height = model_data["height"] self.model_hash = model_data["hash"] # uncache generators so they pick up new models self.generators = {} seed_everything(random.randrange(0, np.iinfo(np.uint32).max)) if self.embedding_path is not None: print(f'>> Loading embeddings from {self.embedding_path}') for root, _, files in os.walk(self.embedding_path): for name in files: ti_path = os.path.join(root, name) self.model.textual_inversion_manager.load_textual_inversion( ti_path, defer_injecting_tokens=True ) print( f'>> Textual inversion triggers: {", ".join(sorted(self.model.textual_inversion_manager.get_all_trigger_strings()))}' ) self.model_name = model_name self._set_sampler() # requires self.model_name to be set first return self.model def load_huggingface_concepts(self, concepts: list[str]): self.model.textual_inversion_manager.load_huggingface_concepts(concepts) @property def huggingface_concepts_library(self) -> HuggingFaceConceptsLibrary: return self.model.textual_inversion_manager.hf_concepts_library @property def embedding_trigger_strings(self) -> List[str]: return self.model.textual_inversion_manager.get_all_trigger_strings() def correct_colors(self, image_list, reference_image_path, image_callback=None): reference_image = Image.open(reference_image_path) correction_target = cv2.cvtColor(np.asarray(reference_image), cv2.COLOR_RGB2LAB) for r in image_list: image, seed = r image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2LAB) image = skimage.exposure.match_histograms( image, correction_target, channel_axis=2 ) image = Image.fromarray( cv2.cvtColor(image, cv2.COLOR_LAB2RGB).astype("uint8") ) if image_callback is not None: image_callback(image, seed) else: r[0] = image def upscale_and_reconstruct( self, image_list, facetool="gfpgan", upscale=None, upscale_denoise_str=0.75, strength=0.0, codeformer_fidelity=0.75, save_original=False, image_callback=None, prefix=None, ): results = [] for r in image_list: image, seed = r try: if strength > 0: if self.gfpgan is not None or self.codeformer is not None: if facetool == "gfpgan": if self.gfpgan is None: print( ">> GFPGAN not found. Face restoration is disabled." ) else: image = self.gfpgan.process(image, strength, seed) if facetool == "codeformer": if self.codeformer is None: print( ">> CodeFormer not found. Face restoration is disabled." ) else: cf_device = ( "cpu" if str(self.device) == "mps" else self.device ) image = self.codeformer.process( image=image, strength=strength, device=cf_device, seed=seed, fidelity=codeformer_fidelity, ) else: print(">> Face Restoration is disabled.") if upscale is not None: if self.esrgan is not None: if len(upscale) < 2: upscale.append(0.75) image = self.esrgan.process( image, upscale[1], seed, int(upscale[0]), denoise_str=upscale_denoise_str, ) else: print(">> ESRGAN is disabled. Image not upscaled.") except Exception as e: print( f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}" ) if image_callback is not None: image_callback(image, seed, upscaled=True, use_prefix=prefix) else: r[0] = image results.append([image, seed]) return results def apply_textmask( self, image_path: str, prompt: str, callback, threshold: float = 0.5 ): assert os.path.exists( image_path ), f'** "{image_path}" not found. Please enter the name of an existing image file to mask **' basename, _ = os.path.splitext(os.path.basename(image_path)) if self.txt2mask is None: self.txt2mask = Txt2Mask(device=self.device, refined=True) segmented = self.txt2mask.segment(image_path, prompt) trans = segmented.to_transparent() inverse = segmented.to_transparent(invert=True) mask = segmented.to_mask(threshold) path_filter = re.compile(r'[<>:"/\\|?*]') safe_prompt = path_filter.sub("_", prompt)[:50].rstrip(" .") callback(trans, f"{safe_prompt}.deselected", use_prefix=basename) callback(inverse, f"{safe_prompt}.selected", use_prefix=basename) callback(mask, f"{safe_prompt}.masked", use_prefix=basename) # to help WebGUI - front end to generator util function def sample_to_image(self, samples): return self._make_base().sample_to_image(samples) def sample_to_lowres_estimated_image(self, samples): return self._make_base().sample_to_lowres_estimated_image(samples) def is_legacy_model(self, model_name) -> bool: return self.model_manager.is_legacy(model_name) def _set_sampler(self): if isinstance(self.model, DiffusionPipeline): return self._set_scheduler() else: return self._set_sampler_legacy() # very repetitive code - can this be simplified? The KSampler names are # consistent, at least def _set_sampler_legacy(self): msg = f">> Setting Sampler to {self.sampler_name}" if self.sampler_name == "plms": self.sampler = PLMSSampler(self.model, device=self.device) elif self.sampler_name == "ddim": self.sampler = DDIMSampler(self.model, device=self.device) elif self.sampler_name == "k_dpm_2_a": self.sampler = KSampler(self.model, "dpm_2_ancestral", device=self.device) elif self.sampler_name == "k_dpm_2": self.sampler = KSampler(self.model, "dpm_2", device=self.device) elif self.sampler_name == "k_dpmpp_2_a": self.sampler = KSampler( self.model, "dpmpp_2s_ancestral", device=self.device ) elif self.sampler_name == "k_dpmpp_2": self.sampler = KSampler(self.model, "dpmpp_2m", device=self.device) elif self.sampler_name == "k_euler_a": self.sampler = KSampler(self.model, "euler_ancestral", device=self.device) elif self.sampler_name == "k_euler": self.sampler = KSampler(self.model, "euler", device=self.device) elif self.sampler_name == "k_heun": self.sampler = KSampler(self.model, "heun", device=self.device) elif self.sampler_name == "k_lms": self.sampler = KSampler(self.model, "lms", device=self.device) else: msg = f">> Unsupported Sampler: {self.sampler_name}, Defaulting to plms" self.sampler = PLMSSampler(self.model, device=self.device) print(msg) def _set_scheduler(self): default = self.model.scheduler # See https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672 scheduler_map = dict( ddim=diffusers.DDIMScheduler, dpmpp_2=diffusers.DPMSolverMultistepScheduler, k_dpm_2=diffusers.KDPM2DiscreteScheduler, k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler, # DPMSolverMultistepScheduler is technically not `k_` anything, as it is neither # the k-diffusers implementation nor included in EDM (Karras 2022), but we can # provide an alias for compatibility. k_dpmpp_2=diffusers.DPMSolverMultistepScheduler, k_euler=diffusers.EulerDiscreteScheduler, k_euler_a=diffusers.EulerAncestralDiscreteScheduler, k_heun=diffusers.HeunDiscreteScheduler, k_lms=diffusers.LMSDiscreteScheduler, plms=diffusers.PNDMScheduler, ) if self.sampler_name in scheduler_map: sampler_class = scheduler_map[self.sampler_name] msg = ( f">> Setting Sampler to {self.sampler_name} ({sampler_class.__name__})" ) self.sampler = sampler_class.from_config(self.model.scheduler.config) else: msg = ( f">> Unsupported Sampler: {self.sampler_name} " f"Defaulting to {default}" ) self.sampler = default print(msg) if not hasattr(self.sampler, "uses_inpainting_model"): # FIXME: terrible kludge! self.sampler.uses_inpainting_model = lambda: False def _load_img(self, img) -> Image: if isinstance(img, Image.Image): image = img print(f">> using provided input image of size {image.width}x{image.height}") elif isinstance(img, str): assert os.path.exists(img), f">> {img}: File not found" image = Image.open(img) print( f">> loaded input image of size {image.width}x{image.height} from {img}" ) else: image = Image.open(img) print(f">> loaded input image of size {image.width}x{image.height}") image = ImageOps.exif_transpose(image) return image def _create_init_image(self, image: Image.Image, width, height, fit=True): if image.mode != "RGBA": image = image.convert("RGBA") image = ( self._fit_image(image, (width, height)) if fit else self._squeeze_image(image) ) return image def _create_init_mask(self, image, width, height, fit=True): # convert into a black/white mask image = self._image_to_mask(image) image = image.convert("RGB") image = ( self._fit_image(image, (width, height)) if fit else self._squeeze_image(image) ) return image # The mask is expected to have the region to be inpainted # with alpha transparency. It converts it into a black/white # image with the transparent part black. def _image_to_mask(self, mask_image: Image.Image, invert=False) -> Image: # Obtain the mask from the transparency channel if mask_image.mode == "L": mask = mask_image elif mask_image.mode in ("RGB", "P"): mask = mask_image.convert("L") else: # Obtain the mask from the transparency channel mask = Image.new(mode="L", size=mask_image.size, color=255) mask.putdata(mask_image.getdata(band=3)) if invert: mask = ImageOps.invert(mask) return mask def _txt2mask( self, image: Image, text_mask: list, width, height, fit=True ) -> Image: prompt = text_mask[0] confidence_level = text_mask[1] if len(text_mask) > 1 else 0.5 if self.txt2mask is None: self.txt2mask = Txt2Mask(device=self.device) segmented = self.txt2mask.segment(image, prompt) mask = segmented.to_mask(float(confidence_level)) mask = mask.convert("RGB") mask = ( self._fit_image(mask, (width, height)) if fit else self._squeeze_image(mask) ) return mask def _has_transparency(self, image): if image.info.get("transparency", None) is not None: return True if image.mode == "P": transparent = image.info.get("transparency", -1) for _, index in image.getcolors(): if index == transparent: return True elif image.mode == "RGBA": extrema = image.getextrema() if extrema[3][0] < 255: return True return False def _check_for_erasure(self, image: Image.Image) -> bool: if image.mode not in ("RGBA", "RGB"): return False width, height = image.size pixdata = image.load() colored = 0 for y in range(height): for x in range(width): if pixdata[x, y][3] == 0: r, g, b, _ = pixdata[x, y] if (r, g, b) != (0, 0, 0) and (r, g, b) != (255, 255, 255): colored += 1 return colored == 0 def _transparency_check_and_warning(self, image, mask, force_outpaint=False): if not mask: print( ">> Initial image has transparent areas. Will inpaint in these regions." ) if (not force_outpaint) and self._check_for_erasure(image): print( ">> WARNING: Colors underneath the transparent region seem to have been erased.\n", ">> Inpainting will be suboptimal. Please preserve the colors when making\n", ">> a transparency mask, or provide mask explicitly using --init_mask (-M).", ) def _squeeze_image(self, image): x, y, resize_needed = self._resolution_check(image.width, image.height) if resize_needed: return InitImageResizer(image).resize(x, y) return image def _fit_image(self, image, max_dimensions): w, h = max_dimensions print(f">> image will be resized to fit inside a box {w}x{h} in size.") # note that InitImageResizer does the multiple of 64 truncation internally image = InitImageResizer(image).resize(width=w, height=h) print( f">> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}" ) return image def _resolution_check(self, width, height, log=False): resize_needed = False w, h = map( lambda x: x - x % 64, (width, height) ) # resize to integer multiple of 64 if h != height or w != width: if log: print( f">> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}" ) height = h width = w resize_needed = True return width, height, resize_needed def _has_cuda(self): return self.device.type == "cuda" def write_intermediate_images(self, modulus, path): counter = -1 if not os.path.exists(path): os.makedirs(path) def callback(img): nonlocal counter counter += 1 if counter % modulus != 0: return image = self.sample_to_image(img) image.save(os.path.join(path, f"{counter:03}.png"), "PNG") return callback def _pairwise(iterable): "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a)