from __future__ import annotations from contextlib import nullcontext from typing import Literal, Optional, Union import torch from torch import autocast from invokeai.app.services.config import InvokeAIAppConfig from invokeai.app.services.config.config_default import get_config CPU_DEVICE = torch.device("cpu") CUDA_DEVICE = torch.device("cuda") MPS_DEVICE = torch.device("mps") def choose_torch_device() -> torch.device: """Convenience routine for guessing which GPU device to run model on.""" # """Temporarily modified to use the model manager's get_execution_device()""" # try: # from invokeai.app.api.dependencies import ApiDependencies # model_manager = ApiDependencies.invoker.services.model_manager # device = model_manager.load.ram_cache.acquire_execution_device() # print(f'DEBUG choose_torch_device returning {device}') # return device # except Exception: config = get_config() if config.device == "auto": if torch.cuda.is_available(): return torch.device("cuda") if hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): return torch.device("mps") else: return CPU_DEVICE else: return torch.device(config.device) def get_torch_device_name() -> str: device = choose_torch_device() return torch.cuda.get_device_name(device) if device.type == "cuda" else device.type.upper() # We are in transition here from using a single global AppConfig to allowing multiple # configurations. It is strongly recommended to pass the app_config to this function. def choose_precision( device: torch.device, app_config: Optional[InvokeAIAppConfig] = None ) -> Literal["float32", "float16", "bfloat16"]: """Return an appropriate precision for the given torch device.""" app_config = app_config or get_config() if device.type == "cuda": device_name = torch.cuda.get_device_name(device) if not ("GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name): if app_config.precision == "float32": return "float32" elif app_config.precision == "bfloat16": return "bfloat16" else: return "float16" elif device.type == "mps": return "float16" return "float32" # We are in transition here from using a single global AppConfig to allowing multiple # configurations. It is strongly recommended to pass the app_config to this function. def torch_dtype( device: Optional[torch.device] = None, app_config: Optional[InvokeAIAppConfig] = None, ) -> torch.dtype: device = device or choose_torch_device() precision = choose_precision(device, app_config) if precision == "float16": return torch.float16 if precision == "bfloat16": return torch.bfloat16 else: # "auto", "autocast", "float32" return torch.float32 def choose_autocast(precision): """Returns an autocast context or nullcontext for the given precision string""" # float16 currently requires autocast to avoid errors like: # 'expected scalar type Half but found Float' if precision == "autocast" or precision == "float16": return autocast return nullcontext def normalize_device(device: Union[str, torch.device]) -> torch.device: """Ensure device has a device index defined, if appropriate.""" device = torch.device(device) if device.index is None: # cuda might be the only torch backend that currently uses the device index? # I don't see anything like `current_device` for cpu or mps. if device.type == "cuda": device = torch.device(device.type, torch.cuda.current_device()) return device