from pathlib import Path from typing import Optional, Union import torch from safetensors.torch import load_file from invokeai.backend.model_manager.config import BaseModelType class PeftModel: """A class for loading and managing parameter-efficient fine-tuning models.""" def __init__( self, name: str, state_dict: dict[str, torch.Tensor], ): self._name = name self._state_dict = state_dict @property def name(self) -> str: return self._name def calc_size(self) -> int: model_size = 0 for tensor in self._state_dict.values(): model_size += tensor.nelement() * tensor.element_size() return model_size @classmethod def from_checkpoint( cls, file_path: Union[str, Path], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, base_model: Optional[BaseModelType] = None, ): device = device or torch.device("cpu") dtype = dtype or torch.float32 file_path = Path(file_path) # TODO(ryand): Implement a helper function for this. This logic is duplicated repeatedly. if file_path.suffix == ".safetensors": state_dict = load_file(file_path, device="cpu") else: state_dict = torch.load(file_path, map_location="cpu") # TODO(ryand): # - Detect state_dict format # - Convert state_dict to diffusers format if necessary # if base_model == BaseModelType.StableDiffusionXL: # state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict) return cls(name=file_path.stem, state_dict=state_dict)