# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) from abc import ABC, abstractmethod from inspect import signature from typing import get_args, get_type_hints from pydantic import BaseModel, Field from ..services.invocation_services import InvocationServices class InvocationContext: services: InvocationServices graph_execution_state_id: str def __init__(self, services: InvocationServices, graph_execution_state_id: str): self.services = services self.graph_execution_state_id = graph_execution_state_id class BaseInvocationOutput(BaseModel): """Base class for all invocation outputs""" # All outputs must include a type name like this: # type: Literal['your_output_name'] @classmethod def get_all_subclasses_tuple(cls): subclasses = [] toprocess = [cls] while len(toprocess) > 0: next = toprocess.pop(0) next_subclasses = next.__subclasses__() subclasses.extend(next_subclasses) toprocess.extend(next_subclasses) return tuple(subclasses) class BaseInvocation(ABC, BaseModel): """A node to process inputs and produce outputs. May use dependency injection in __init__ to receive providers. """ # All invocations must include a type name like this: # type: Literal['your_output_name'] @classmethod def get_all_subclasses(cls): subclasses = [] toprocess = [cls] while len(toprocess) > 0: next = toprocess.pop(0) next_subclasses = next.__subclasses__() subclasses.extend(next_subclasses) toprocess.extend(next_subclasses) return subclasses @classmethod def get_invocations(cls): return tuple(BaseInvocation.get_all_subclasses()) @classmethod def get_invocations_map(cls): # Get the type strings out of the literals and into a dictionary return dict(map(lambda t: (get_args(get_type_hints(t)['type'])[0], t),BaseInvocation.get_all_subclasses())) @classmethod def get_output_type(cls): return signature(cls.invoke).return_annotation @abstractmethod def invoke(self, context: InvocationContext) -> BaseInvocationOutput: """Invoke with provided context and return outputs.""" pass id: str = Field(description="The id of this node. Must be unique among all nodes.")