# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team """Invokeai configuration system. Arguments and fields are taken from the pydantic definition of the model. Defaults can be set by creating a yaml configuration file that has a top-level key of "InvokeAI" and subheadings for each of the categories returned by `invokeai --help`. The file looks like this: [file: invokeai.yaml] InvokeAI: Web Server: host: 127.0.0.1 port: 9090 allow_origins: [] allow_credentials: true allow_methods: - '*' allow_headers: - '*' Features: esrgan: true internet_available: true log_tokenization: false patchmatch: true ignore_missing_core_models: false Paths: autoimport_dir: autoimport lora_dir: null embedding_dir: null controlnet_dir: null conf_path: configs/models.yaml models_dir: models legacy_conf_dir: configs/stable-diffusion db_dir: databases outdir: /home/lstein/invokeai-main/outputs use_memory_db: false Logging: log_handlers: - console log_format: plain log_level: info Model Cache: ram: 13.5 vram: 0.25 lazy_offload: true Device: device: auto precision: auto Generation: sequential_guidance: false attention_type: xformers attention_slice_size: auto force_tiled_decode: false The default name of the configuration file is `invokeai.yaml`, located in INVOKEAI_ROOT. You can replace supersede this by providing any OmegaConf dictionary object initialization time: omegaconf = OmegaConf.load('/tmp/init.yaml') conf = InvokeAIAppConfig() conf.parse_args(conf=omegaconf) InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv` at initialization time. You may pass a list of strings in the optional `argv` argument to use instead of the system argv: conf.parse_args(argv=['--log_tokenization']) It is also possible to set a value at initialization time. However, if you call parse_args() it may be overwritten. conf = InvokeAIAppConfig(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # False To avoid this, use `get_config()` to retrieve the application-wide configuration object. This will retain any properties set at object creation time: conf = InvokeAIAppConfig.get_config(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # True Any setting can be overwritten by setting an environment variable of form: "INVOKEAI_", as in: export INVOKEAI_port=8080 Order of precedence (from highest): 1) initialization options 2) command line options 3) environment variable options 4) config file options 5) pydantic defaults Typical usage at the top level file: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size conf = InvokeAIAppConfig.get_config() conf.parse_args() print(conf.ram_cache_size) Typical usage in a backend module: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size value conf = InvokeAIAppConfig.get_config() print(conf.ram_cache_size) Computed properties: The InvokeAIAppConfig object has a series of properties that resolve paths relative to the runtime root directory. They each return a Path object: root_path - path to InvokeAI root output_path - path to default outputs directory model_conf_path - path to models.yaml conf - alias for the above embedding_path - path to the embeddings directory lora_path - path to the LoRA directory In most cases, you will want to create a single InvokeAIAppConfig object for the entire application. The InvokeAIAppConfig.get_config() function does this: config = InvokeAIAppConfig.get_config() config.parse_args() # read values from the command line/config file print(config.root) # Subclassing If you wish to create a similar class, please subclass the `InvokeAISettings` class and define a Literal field named "type", which is set to the desired top-level name. For example, to create a "InvokeBatch" configuration, define like this: class InvokeBatch(InvokeAISettings): type: Literal["InvokeBatch"] = "InvokeBatch" node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources') cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources') This will now read and write from the "InvokeBatch" section of the config file, look for environment variables named INVOKEBATCH_*, and accept the command-line arguments `--node_count` and `--cpu_count`. The two configs are kept in separate sections of the config file: # invokeai.yaml InvokeBatch: Resources: node_count: 1 cpu_count: 8 InvokeAI: Paths: root: /home/lstein/invokeai-main conf_path: configs/models.yaml legacy_conf_dir: configs/stable-diffusion outdir: outputs ... """ from __future__ import annotations import os from omegaconf import OmegaConf, DictConfig from pathlib import Path from pydantic import Field, parse_obj_as from typing import ClassVar, Dict, List, Literal, Union, Optional, get_type_hints from .base import InvokeAISettings INIT_FILE = Path("invokeai.yaml") DB_FILE = Path("invokeai.db") LEGACY_INIT_FILE = Path("invokeai.init") DEFAULT_MAX_VRAM = 0.5 class InvokeAIAppConfig(InvokeAISettings): """ Generate images using Stable Diffusion. Use "invokeai" to launch the command-line client (recommended for experts only), or "invokeai-web" to launch the web server. Global options can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by setting environment variables INVOKEAI_. """ singleton_config: ClassVar[InvokeAIAppConfig] = None singleton_init: ClassVar[Dict] = None # fmt: off type: Literal["InvokeAI"] = "InvokeAI" # WEB host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server') port : int = Field(default=9090, description="Port to bind to", category='Web Server') allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server') allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server') allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server') allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server') # FEATURES esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features') internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features') log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features') patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features') ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features') # PATHS root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths') autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths') lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths') embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths') controlnet_dir : Path = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths') conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths') models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths') legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths') db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths') outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths') use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths') from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths') # LOGGING log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=", "syslog=path|address:host:port", "http="', category="Logging") # note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging") log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging") version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other") # CACHE ram : Union[float, Literal["auto"]] = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category="Model Cache", ) vram : Union[float, Literal["auto"]] = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number or 'auto')", category="Model Cache", ) lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", category="Model Cache", ) # DEVICE device : Literal[tuple(["auto", "cpu", "cuda", "cuda:1", "mps"])] = Field(default="auto", description="Generation device", category="Device", ) precision: Literal[tuple(["auto", "float16", "float32", "autocast"])] = Field(default="auto", description="Floating point precision", category="Device", ) # GENERATION sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category="Generation", ) attention_type : Literal[tuple(["auto", "normal", "xformers", "sliced", "torch-sdp"])] = Field(default="auto", description="Attention type", category="Generation", ) attention_slice_size: Literal[tuple(["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8])] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', category="Generation", ) force_tiled_decode: bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category="Generation",) # DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance') free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", category='Memory/Performance') max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance') max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance') xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance') tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance') # See InvokeAIAppConfig subclass below for CACHE and DEVICE categories # fmt: on class Config: validate_assignment = True def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False): """ Update settings with contents of init file, environment, and command-line settings. :param conf: alternate Omegaconf dictionary object :param argv: aternate sys.argv list :param clobber: ovewrite any initialization parameters passed during initialization """ # Set the runtime root directory. We parse command-line switches here # in order to pick up the --root_dir option. super().parse_args(argv) if conf is None: try: conf = OmegaConf.load(self.root_dir / INIT_FILE) except Exception: pass InvokeAISettings.initconf = conf # parse args again in order to pick up settings in configuration file super().parse_args(argv) if self.singleton_init and not clobber: hints = get_type_hints(self.__class__) for k in self.singleton_init: setattr(self, k, parse_obj_as(hints[k], self.singleton_init[k])) @classmethod def get_config(cls, **kwargs) -> InvokeAIAppConfig: """ This returns a singleton InvokeAIAppConfig configuration object. """ if ( cls.singleton_config is None or type(cls.singleton_config) is not cls or (kwargs and cls.singleton_init != kwargs) ): cls.singleton_config = cls(**kwargs) cls.singleton_init = kwargs return cls.singleton_config @property def root_path(self) -> Path: """ Path to the runtime root directory """ if self.root: root = Path(self.root).expanduser().absolute() else: root = self.find_root().expanduser().absolute() self.root = root # insulate ourselves from relative paths that may change return root @property def root_dir(self) -> Path: """ Alias for above. """ return self.root_path def _resolve(self, partial_path: Path) -> Path: return (self.root_path / partial_path).resolve() @property def init_file_path(self) -> Path: """ Path to invokeai.yaml """ return self._resolve(INIT_FILE) @property def output_path(self) -> Path: """ Path to defaults outputs directory. """ return self._resolve(self.outdir) @property def db_path(self) -> Path: """ Path to the invokeai.db file. """ return self._resolve(self.db_dir) / DB_FILE @property def model_conf_path(self) -> Path: """ Path to models configuration file. """ return self._resolve(self.conf_path) @property def legacy_conf_path(self) -> Path: """ Path to directory of legacy configuration files (e.g. v1-inference.yaml) """ return self._resolve(self.legacy_conf_dir) @property def models_path(self) -> Path: """ Path to the models directory """ return self._resolve(self.models_dir) @property def autoconvert_path(self) -> Path: """ Path to the directory containing models to be imported automatically at startup. """ return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None # the following methods support legacy calls leftover from the Globals era @property def full_precision(self) -> bool: """Return true if precision set to float32""" return self.precision == "float32" @property def try_patchmatch(self) -> bool: """Return true if patchmatch true""" return self.patchmatch @property def nsfw_checker(self) -> bool: """NSFW node is always active and disabled from Web UIe""" return True @property def invisible_watermark(self) -> bool: """invisible watermark node is always active and disabled from Web UIe""" return True @property def ram_cache_size(self) -> float: return self.max_cache_size or self.ram @property def vram_cache_size(self) -> float: return self.max_vram_cache_size or self.vram @property def use_cpu(self) -> bool: return self.always_use_cpu or self.device == "cpu" @property def disable_xformers(self) -> bool: """ Return true if enable_xformers is false (reversed logic) and attention type is not set to xformers. """ disabled_in_config = not self.xformers_enabled return disabled_in_config and self.attention_type != "xformers" @staticmethod def find_root() -> Path: """ Choose the runtime root directory when not specified on command line or init file. """ return _find_root() def get_invokeai_config(**kwargs) -> InvokeAIAppConfig: """ Legacy function which returns InvokeAIAppConfig.get_config() """ return InvokeAIAppConfig.get_config(**kwargs) def _find_root() -> Path: venv = Path(os.environ.get("VIRTUAL_ENV") or ".") if os.environ.get("INVOKEAI_ROOT"): root = Path(os.environ["INVOKEAI_ROOT"]) elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]): root = (venv.parent).resolve() else: root = Path("~/invokeai").expanduser().resolve() return root